GraphGPT——图结构数据的新语言模型

在人工智能的浪潮中,图神经网络(GNNs)已经成为理解和分析图结构数据的强大工具。然而,GNNs在面对未标记数据时,其泛化能力往往受限。为了突破这一局限,研究者们提出了GraphGPT,这是一种为大语言模型(LLMs)量身定制的图结构知识融合框架。本文将探讨GraphGPT如何革新我们处理图数据的方式。

什么是GraphGPT?

GraphGPT是一种新型框架,它通过图指令调整(Graph Instruction Tuning)来提升大语言模型对图结构数据的理解力和泛化能力。这一框架特别适合于零样本学习场景,即在没有下游任务标签的情况下进行预训练和微调。

GraphGPT的核心优势在于其创新的框架设计,该设计专门针对图结构数据的理解与处理进行了优化。以下是GraphGPT几个关键优势的详细介绍:

1. 图结构编码与文本-图基础范式(Text-Graph Grounding)

GraphGPT通过一种称为文本-图基础范式的方法,实现了图结构信息与自然语言空间的有效对齐。这一范式允许模型生成保留图结构上下文的提示(prompts),从而使得大语言模型(LLMs)能够利用其固有的语言理解能力来解释图的语义信息。这种方法作为桥梁,连接了图的语义理解和图内的结构关系。

2. 双阶段图指令调整(Dual-Stage Graph Instruction Tuning)

GraphGPT采用了一个双阶段的指令调整过程,该过程包含自监督指令调整和任务特定指令调整两个部分:

  • 自监督指令调整:在第一阶段,GraphGPT使用来自未标记图结构的自监督信号作为指令,以增强模型对图结构域特定知识的理解。通过设计结构感知的图匹配任务,模型能够区分不同的图标记,并将这些标记与其相应的文本描述准确关联。
  • 任务特定指令调整:在第二阶段,模型通过使用特定于任务的图指令进行微调,以定制化模型的推理行为,满足不同图学习任务的特定约束和要求。

3. 链式思考(Chain-of-Thought, CoT)蒸馏

为了应对多样化的图数据和分布偏移问题,GraphGPT引入了链式思考技术,以增强模型的逐步推理能力。CoT技术通过明确模拟思考过程和推理步骤,提高了模型生成文本的连贯性和一致性。此外,通过从封闭源的强大语言模型(如ChatGPT)中提取有价值的知识,GraphGPT能够在不增加参数规模的情况下,提高模型的CoT推理能力。

实验与评估

实验使用了三个主要数据集:OGB-arxiv、PubMed 和 Cora,这些数据集覆盖了计算机科学论文引用网络、糖尿病相关科学出版物以及更广泛的研究论文。为了确保实验的兼容性和可比性,研究者们采用预训练的 BERT 模型对节点特征进行编码,并将数据集按照一定的比例划分为训练集、验证集和测试集。

在监督学习设置中,GraphGPT 在特定数据集上训练,并在相同数据集的测试集上评估性能。而在零样本学习设置中,GraphGPT 接受一个数据集的训练后,直接在完全不同的数据集上进行测试,无需额外训练。这种设置模拟了现实世界中标签数据稀缺的情况。

评估指标包括节点分类任务的准确率和宏平均 F1 分数,以及链接预测任务的 AUC(Area Under the Curve)。与多个现有的先进方法相比,包括传统的机器学习方法、图神经网络架构、自监督学习方法、知识蒸馏方法和最新的图变换网络,GraphGPT 在多个任务上均展现出了优越的性能。

此外,研究者们还进行了模块消融研究,以评估 GraphGPT 中不同组件的贡献。结果表明,图指令调整和链式思考蒸馏对于提升模型性能至关重要。模型效率研究也表明,GraphGPT 在训练和推理阶段都具有较高的效率,这得益于其创新的图-文本对齐投影器和双阶段指令调整策略。

最终,通过模型案例研究,研究者们展示了 GraphGPT 如何在实际的图学习任务中,如节点分类和链接预测,提供准确的预测和合理的解释。这些实验结果不仅证明了 GraphGPT 在图学习任务中的有效性,也展示了其在零样本学习场景中的泛化能力。通过这些实验,研究者们成功地展示了 GraphGPT 作为一个强大的图学习框架的潜力。

实验结果证明了 GraphGPT 框架在图学习任务中的优越性能,特别是在缺乏标记数据的零样本学习场景下。此外,通过 CoT 蒸馏,GraphGPT 展现出了强大的逐步推理能力,能够更好地理解和推理图结构数据。

论文链接:https://arxiv.org/pdf/2310.13023

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/670904.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenNJet:云原生技术中的创新者与实践者

目录 引言OpenNJet介绍OpenNJet优势1. 性能无损动态配置2. 灵活的CoPilot框架3. 支持HTTP/34. 支持国密5. 企业级应用6. 高效安全 OpenNJet 编译与安装环境准备编译环境配置配置yum源yum 安装软件包创建符号连接修改 ld.so.conf 配置 编译代码 部署 WEB SERVER配置OpenNJet部署…

计算机毕设

随着社会和国家的重视,大学对于大学生毕业设计越来越重视。 做软件设计设计方面,前后端分离是必不可少的,代码管理工具,前后端接口测试是项目中必须要用到的工具。做大数据设计方面,主要是要用到爬虫进行数据爬取&…

AArch64 内存管理

本文是对arm developer网站《Learn the architecture - AArch64 memory management Guide》的学习笔记(Documentation – Arm Developer) 一、背景概述 本文介绍了AArch64中的内存转换,这是内存管理的关键,它解释了虚拟地址如何转…

【Pytorch】2.TensorBoard的运用

什么是TensorBoard 是一个可视化和理解深度爵溪模型的工具。它可以通过显示模型结构、训练过程中的指标和图形化展示训练的效果来帮助用户更好地理解和调试他们的模型 TensorBoard的使用 安装tensorboard环境 在终端使用 conda install tensorboard通过anaconda安装 导入类Sum…

408数据结构-树与森林 自学知识点整理

前置知识:树的基本概念与性质 树的存储结构 树既可以采用顺序存储结构,又可采用链式存储结构。但无论采取哪种方式,都要求能够唯一地反映树中各结点之间的逻辑关系。 1. 双亲表示法 这种存储结构采用一组连续空间来存储每个结点&#xff0…

DW PCIE LINUX的初始化分析

一些定义 PCIE复位:一些PCIE复位的知识链接 PCIE初始化:初始化相关定义看下面链接和下图 C语言简化初始化看本人的《DW PCIE的PCIE的RC和EP最简初始化学习笔记》文章。 Sticky Registers:与传统的复位方式相同,FLR方式不能复位…

Linux环境下的事件驱动力量:探索Libevent的高性能I/O架构

hello !大家好呀! 欢迎大家来到我的Linux高性能服务器编程系列之《Linux环境下的事件驱动力量:探索Libevent的高性能I/O架构》,在这篇文章中,你将会学习到Libevent的高性能I/O原理以及应用,并且我会给出源码…

java中的字符串(String)常量池理解

下面创建String对象的方式一样吗? 上述程序创建对象类似,为什么s1和s2引用对象一样,但是s3和s4不一样呢? 在java程序中,许多基本类型的字面常量会经常用到,例如2,3.11,“hyy”等。为了提升程序…

一文读懂Vue生命周期(Vue2)

一文读懂Vue生命周期(Vue2) 目录 一文读懂Vue生命周期(Vue2)1 前言2 Vue生命周期2.1 基本生命周期2.1.1 8个生命周期2.1.2 案例 2.2 组件生命周期2.2.1 父子生命周期2.2.2 案例 2.3 keep-alive生命周期2.3.1 案例 2.4 其他 3 总结…

OpenHarmony实战开发-应用侧调用前端页面函数

应用侧可以通过runJavaScript()方法调用前端页面的JavaScript相关函数。 在下面的示例中&#xff0c;点击应用侧的“runJavaScript”按钮时&#xff0c;来触发前端页面的htmlTest()方法。 前端页面代码。 <!-- index.html --> <!DOCTYPE html> <html> <…

迭代器解释(C++)

一、什么是迭代器 为了提高C编程的效率&#xff0c;STL&#xff08;Standard Template Library&#xff09;中提供了许多容器&#xff0c;包括vector、list、map、set等。然而有些容器&#xff08;vector&#xff09;可以通过下标索引的方式访问容器里面的数据&#xff0c;但是…

php基础知识快速入门

一、PHP基本知识 1、php介绍&#xff1a; php是一种创建动态交互性的强有力的服务器脚本语言&#xff0c;PHP是开源免费的&#xff0c;并且使用广泛。PHP是解释性语言&#xff0c;按顺序从上往下执行&#xff0c;无需编译&#xff0c;直接运行。PHP脚本在服务器上运行。 2、ph…