稀疏感知图像和体数据恢复的系统对象研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

稀疏感知图像和体数据恢复是一种用于恢复损坏、噪声或不完整的图像和体数据的技术。它利用了信号的稀疏性,即信号在某种基础下可以用较少的非零系数表示,从而实现高质量的恢复。

在进行稀疏感知图像和体数据恢复的研究时,需要定义一些系统对象。这些对象描述了系统中的各个组成部分和它们之间的关系,有助于实现恢复算法的设计和实现。

系统对象的定义包括以下几个方面:

1. 输入数据对象:这个对象描述了输入的损坏、噪声或不完整的图像或体数据。它可以是一个图像矩阵、一个体数据的三维数组或其他适当的数据结构。

2. 稀疏表示对象:这个对象描述了信号的稀疏表示。它可以是一个稀疏矩阵、一个稀疏系数向量或其他适当的数据结构。稀疏表示对象是恢复算法的关键部分,它通过选择适当的基础和优化方法来实现信号的稀疏表示。

3. 恢复算法对象:这个对象描述了用于恢复稀疏感知图像和体数据的算法。它可以是一个迭代算法、一个优化算法或其他适当的算法。恢复算法对象通常包括对输入数据对象和稀疏表示对象的处理步骤,以及对恢复结果的评估和优化步骤。

4. 输出数据对象:这个对象描述了恢复后的图像或体数据。它可以是一个恢复后的图像矩阵、一个恢复后的体数据的三维数组或其他适当的数据结构。

通过定义这些系统对象,研究人员可以更好地理解稀疏感知图像和体数据恢复的过程,并设计出高效、准确的恢复算法。这些系统对象的定义还可以为稀疏感知图像和体数据恢复的实际应用提供指导,例如医学图像处理、计算机视觉和图像压缩等领域。

📚2 运行结果

 

 部分代码:

%% Create a step monitor system object
% ISTA iteratively approaches to the optimum solution. In order to 
% observe the intermediate results, the following class can be used:
%
% * saivdr.utility.StepMonitoringSystem% Parameters for StepMonitoringSystem
isverbose = true;  % Verbose mode
isvisible = true;  % Monitor intermediate results
hfig2 = figure(2); % Figure to show the source, observed and result image 
hfig2.Name = 'ISTA-based Image Restoration';% Instantiation of StepMonitoringSystem
import saivdr.utility.StepMonitoringSystem
stepmonitor = StepMonitoringSystem(...'DataType', 'Image',...'SourceImage',   orgImg,...    % Original image'ObservedImage', obsImg,...    % Observed image'IsMSE',         false,...     % Switch for MSE  evaluation'IsPSNR',        true,...      % Switch for PSNR evaluation'IsSSIM',        false,...     % Switch for SSIM evaluation'IsVerbose',     isverbose,... % Switch for verbose mode'IsVisible',     isvisible,... % Switch for display intermediate result'ImageFigureHandle',hfig2);    % Figure handle% Set the object to the ISTA system object
ista.StepMonitor = stepmonitor;%% Perform ISTA-based image restoration
% STEP method of IstaImRestoration system object, _ista_ , executes 
% the ISTA-based image restoration to deblur the observed image.
% As the result, a restored image 
%
% $\hat{\mathbf{u}} = \mathbf{D}\hat{\mathbf{y}}$
%
% is obtained.fprintf('\n ISTA')
resImg = ista.step(obsImg); % STEP method of IstaImRestoration%% Extract the final evaluation  
% The object of StepMonitoringSystem, _stepmonitor_ , stores the 
% evaluation values calculated iteratively in ISTA as a vector. The GET 
% method of _stepmonitor_  can be used to extract the number of iterations
% and the sequence of PSNRs. nItr  = stepmonitor.nItr;
psnrs = stepmonitor.PSNRs;
psnr_ista = psnrs(nItr);%% Perform Wiener filtering
% As a reference, let us show a result of Wiener filter.% Create a step monitor system object for the PSNR evaluation
stepmonitor = StepMonitoringSystem(...'SourceImage',orgImg,...'MaxIter', 1,...'IsMSE',  false,...'IsPSNR', true,...'IsSSIM', false,...'IsVisible', false,...'IsVerbose', isverbose);% Use the same blur kernel as that applied to the observed image, obsImg
blurKernel = blur.BlurKernel;% Estimation of noise to signal ratio
nsr = noise_var/var(orgImg(:));% Wiener filter deconvolution of Image Processing Toolbox
wnfImg = deconvwnr(obsImg, blurKernel, nsr);% Evaluation
fprintf('\n Wiener')
psnr_wfdc = stepmonitor.step(wnfImg); % STEP method of StepMonitoringSystem%% Compare deblurring performances
% In order to compare the deblurring performances between two methods,
% ISTA-based deblurring with NSOLT and Wiener filter, let us show 
% the original, observed and two results in one figure together.hfig3 = figure(3);% Original image x
subplot(2,2,1)
imshow(orgImg)
title('Original image {\bf u}')% Observed image u
subplot(2,2,2)
imshow(obsImg)
title('Observed image {\bf x}')% Result u^ of ISTA 
subplot(2,2,3)
imshow(resImg)
title(['{\bf u}\^ by ISTA  : ' num2str(psnr_ista) ' [dB]'])% Result u^ of Wiener filter
subplot(2,2,4)
imshow(wnfImg)
title(['{\bf u}\^ by Wiener: ' num2str(psnr_wfdc) ' [dB]'])

%% Create a step monitor system object
% ISTA iteratively approaches to the optimum solution. In order to 
% observe the intermediate results, the following class can be used:
%
% * saivdr.utility.StepMonitoringSystem

% Parameters for StepMonitoringSystem
isverbose = true;  % Verbose mode
isvisible = true;  % Monitor intermediate results
hfig2 = figure(2); % Figure to show the source, observed and result image 
hfig2.Name = 'ISTA-based Image Restoration';

% Instantiation of StepMonitoringSystem
import saivdr.utility.StepMonitoringSystem
stepmonitor = StepMonitoringSystem(...
    'DataType', 'Image',...
    'SourceImage',   orgImg,...    % Original image
    'ObservedImage', obsImg,...    % Observed image
    'IsMSE',         false,...     % Switch for MSE  evaluation
    'IsPSNR',        true,...      % Switch for PSNR evaluation
    'IsSSIM',        false,...     % Switch for SSIM evaluation
    'IsVerbose',     isverbose,... % Switch for verbose mode
    'IsVisible',     isvisible,... % Switch for display intermediate result
    'ImageFigureHandle',hfig2);    % Figure handle
    
% Set the object to the ISTA system object
ista.StepMonitor = stepmonitor;

%% Perform ISTA-based image restoration
% STEP method of IstaImRestoration system object, _ista_ , executes 
% the ISTA-based image restoration to deblur the observed image.
% As the result, a restored image 
%
% $\hat{\mathbf{u}} = \mathbf{D}\hat{\mathbf{y}}$
%
% is obtained.

fprintf('\n ISTA')
resImg = ista.step(obsImg); % STEP method of IstaImRestoration

%% Extract the final evaluation  
% The object of StepMonitoringSystem, _stepmonitor_ , stores the 
% evaluation values calculated iteratively in ISTA as a vector. The GET 
% method of _stepmonitor_  can be used to extract the number of iterations
% and the sequence of PSNRs. 

nItr  = stepmonitor.nItr;
psnrs = stepmonitor.PSNRs;
psnr_ista = psnrs(nItr);

%% Perform Wiener filtering
% As a reference, let us show a result of Wiener filter.

% Create a step monitor system object for the PSNR evaluation
stepmonitor = StepMonitoringSystem(...
    'SourceImage',orgImg,...
    'MaxIter', 1,...
    'IsMSE',  false,...
    'IsPSNR', true,...
    'IsSSIM', false,...
    'IsVisible', false,...
    'IsVerbose', isverbose);

% Use the same blur kernel as that applied to the observed image, obsImg
blurKernel = blur.BlurKernel;

% Estimation of noise to signal ratio
nsr = noise_var/var(orgImg(:));

% Wiener filter deconvolution of Image Processing Toolbox
wnfImg = deconvwnr(obsImg, blurKernel, nsr);

% Evaluation
fprintf('\n Wiener')
psnr_wfdc = stepmonitor.step(wnfImg); % STEP method of StepMonitoringSystem

%% Compare deblurring performances
% In order to compare the deblurring performances between two methods,
% ISTA-based deblurring with NSOLT and Wiener filter, let us show 
% the original, observed and two results in one figure together.

hfig3 = figure(3);

% Original image x
subplot(2,2,1)
imshow(orgImg)
title('Original image {\bf u}')

% Observed image u
subplot(2,2,2)
imshow(obsImg)
title('Observed image {\bf x}')

% Result u^ of ISTA 
subplot(2,2,3)
imshow(resImg)
title(['{\bf u}\^ by ISTA  : ' num2str(psnr_ista) ' [dB]'])

% Result u^ of Wiener filter
subplot(2,2,4)
imshow(wnfImg)
title(['{\bf u}\^ by Wiener: ' num2str(psnr_wfdc) ' [dB]'])

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]薛明.压缩感知及稀疏性分解在图像复原中的应用研究[D].西安电子科技大学,2011.DOI:CNKI:CDMD:2.2010.083018.

  • uiki Kobayashi, Shogo Muramatsu, Shunsuke Ono, "Proximal Gradient-Based Loop Unrolling with Interscale Thresholding," Proc. Assoc. Annual Summit and Conf. (APSIPA ASC), Dec. 2021

  • Genki Fujii, Yuta Yoshida, Shogo Muramatsu, Shunsuke Ono, Samuel Choi, Takeru Ota, Fumiaki Nin, Hiroshi Hibino, "OCT Volumetric Data Restoration with Latent Distribution of Refractive Index," Proc. of 2019 IEEE International Conference on Image Processing (ICIP), pp.764-768, Sept. 2019

  • Yuhei Kaneko, Shogo Muramatsu, Hiroyasu Yasuda, Kiyoshi Hayasaka, Yu Otake, Shunsuke Ono, Masahiro Yukawa, "Convolutional-Sparse-Coded Dynamic Mode Decompsition and Its Application to River State Estimation," Proc. of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.1872-1876, May 2019

  • Shogo Muramatsu, Samuel Choi, Shunske Ono, Takeru Ota, Fumiaki Nin, Hiroshi Hibino, "OCT Volumetric Data Restoration via Primal-Dual Plug-and-Play Method," Proc. of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.801-805, Apr. 2018

  • Shogo Muramatsu, Kosuke Furuya and Naotaka Yuki, "Multidimensional Nonseparable Oversampled Lapped Transforms: Theory and Design," IEEE Trans. on Signal Process., Vol.65, No.5, pp.1251-1264, DOI:10.1109/TSP.2016.2633240, March 2017

  • Kota Horiuchi and Shogo Muramatsu, "Fast convolution technique for Non-separable Oversampled Lapped Transforms," Proc. of Asia Pacific Signal and Information Proc. Assoc. Annual Summit and Conf. (APSIPA ASC), Dec. 2016

  • Shogo Muramatsu, Masaki Ishii and Zhiyu Chen, "Efficient Parameter Optimization for Example-Based Design of Non-separable Oversampled Lapped Transform," Proc. of 2016 IEEE Intl. Conf. on Image Process. (ICIP), pp.3618-3622, Sept. 2016

  • Shogo Muramatsu, "Structured Dictionary Learning with 2-D Non-separable Oversampled Lapped Transform," Proc. of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.2643-2647, May 2014

  • Kousuke Furuya, Shintaro Hara and Shogo Muramatsu, "Boundary Operation of 2-D non-separable Oversampled Lapped Transforms," Proc. of Asia Pacific Signal and Information Proc. Assoc. Annual Summit and Conf. (APSIPA ASC), Nov. 2013

  • Shogo Muramatsu and Natsuki Aizawa, "Image Restoration with 2-D Non-separable Oversampled Lapped Transforms," Proc. of 2013 IEEE International Conference on Image Process. (ICIP), pp.1051-1055, Sep. 2013

  • Shogo Muramatsu and Natsuki Aizawa, "Lattice Structures for 2-D Non-separable Oversampled Lapped Transforms," Proc. of 2013 IEEE International Conference on Acoustics, Speech and Signal Process. (ICASSP), pp.5632-5636, May 2013

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/67105.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Elasticsearch的一些基本概念

文章目录 基本概念:文档和索引JSON文档元数据索引REST API 节点和集群节点Master eligible节点和Master节点Data Node 和 Coordinating Node其它节点 分片(Primary Shard & Replica Shard)分片的设定操作命令 基本概念:文档和索引 Elasticsearch是面…

【Unity3D】Shader Graph节点

1 前言 Shader Graph 16.0.3 中有 208 个 Node(节点),本文梳理了 Shader Graph 中大部分 Node 的释义,官方介绍详见→Node-Library。 选中节点后,右键弹出菜单栏,点击 Open Documentation(或 按…

3.4 网络安全管理设备

数据参考:CISP官方 目录 IDS (入侵检测系统)网络安全审计漏洞扫描系统VPN(虚拟专网)堡垒主机安全管理平台 一、IDS (入侵检测系统) 入侵检测系统(IDS)是一种网络安全设备,用于监测和检测网络中的入侵行…

【Vue-Router】命名视图

命名视图 同时 (同级) 展示多个视图,而不是嵌套展示,例如创建一个布局,有 sidebar (侧导航) 和 main (主内容) 两个视图,这个时候命名视图就派上用场了。 可以在界面中拥有多个单独命名的视图,而不是只有一个单独的出…

多种求组合数算法

目录 求组合数Ⅰ(递推)核心理论理论推导典型例题代码实现 求组合数Ⅱ(预处理)核心理论典型例题代码实现 求组合数Ⅲ(Lucas定理)核心理论Lucas定理的证明1.证明Lucas定理的第一形式2.证明Lucas定理的第二形式…

安全 1自测

常见对称加密算法: DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合; 3DES(Triple DES):是基于DES,对一块数据用…

学习笔记-JVM监控平台搭建

SpringBoot Actuator 1 引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-actuator</artifactId> </dependency>2 开启配置 # 暴露所有的监控点【含Prometheus】 management.endpoin…

RabbitMQ简单使用

RabbitMq是一个消息中间件&#xff1a;它接收消息、转发消息。你可以把它理解为一个邮局&#xff1a;当你向邮箱里寄出一封信后&#xff0c;邮递员们就能最终将信送到收信人手中。 RabbitMq、消息相关术语如下&#xff1a; 生产者&#xff1a;生产者只发送消息&#xff0c;发…

获取接口的所有实现

一、获取接口所有实现类 方法1&#xff1a;JDK自带的ServiceLoader实现 ServiceLoader是JDK自带的一个类加载器&#xff0c;位于java.util包当中&#xff0c;作为 A simple service-provider loading facility。 &#xff08;1&#xff09;创建接口 package com.example.dem…

大数据--难点--地图的制作

地图一直是亮点也是难点&#xff0c;刚刚进公司的时候也很难懂~~做出来的也很难看 纯CSS3使用vw和vh视口单位实现h5页面自适应&#xff0c;gulp自动监听sass改动并保存到css中 当修改了sass里面的代码后&#xff0c;gulp会自动监听修改内容并同名保存到css文件夹中&#xff0…

纯C#使用Visionpro工具2 操作斑点工具

结果图 通过斑点工具中非圆性找取圆特征 代码 using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Windows.For…

计算机设计大赛国赛一等奖项目分享——基于多端融合的化工安全生产监管可视化系统

文章目录 一、计算机设计大赛国赛一等奖二、项目背景三、项目简介四、系统架构五、系统功能结构六、项目特色&#xff08;1&#xff09;多端融合&#xff08;2&#xff09;数据可视化&#xff08;3&#xff09;计算机视觉&#xff08;目标检测&#xff09; 七、系统界面设计&am…