代码实现:
import torch
from torch import nn
from d2l import torch as d2lnet = nn.Sequential(nn.Conv2d(in_channels=1,out_channels=96,kernel_size=11,stride=4,padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2),nn.Conv2d(in_channels=96,out_channels=256,kernel_size=5,padding=2),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2),nn.Conv2d(256,384, kernel_size=3, padding=1),nn.ReLU(),nn.Conv2d(384,384, kernel_size=3, padding=1),nn.ReLU(),nn.Conv2d(384,256, kernel_size=3, padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Flatten(), nn.Linear(6400,4096),nn.ReLU(),nn.Dropout(p=0.5),nn.Linear(4096,4096),nn.ReLU(),nn.Dropout(p=0.5),nn.Linear(4096,10)
)
batch_size = 128
train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size,resize=224)
lr,num_epochs = 0.01,10
d2l.train_ch6(net,train_iter,test_iter,num_epochs,lr,d2l.try_gpu())