在Codelab对llama3做Lora Fine tune微调

Unsloth 高效微调大模型的工具,通过Unsloth微调Llama3, Mistral, Gemma 速度提升2-5倍,内存减少70%!

Codelab 创建一个jupyter notebook

在这里插入图片描述
选择 T4 GPU
在这里插入图片描述
安装Fine tune 相关的lib

%%capture
import torch
major_version, minor_version= torch.cuda.get_device_capability()
# Must install separately since Colab has torch 2.2.1, which breaks packages
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
if major_version >= 8:# Use this for new GPs like Ampere, Hopper GPUs(RTX 30xx. RIX 40xx, A100. H100. L40)!pip install -no-deps packaging ninja einops flash-attn xformers trl peft accelerate bitsandbytes
else:# Use this for older GPUs (V100, Tesla T4, RTX 20xx)!pip install --no-deps xformers trl peft accelerate bitsandbytes
pass

下载llama3

from unsloth import FastLanguageModel
import torch
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False# 4bit pre quantized models we support for 4x faster downloading + no OOMs
fourbit_models = ["unsloth/mistral-7b-bnb-4bit","unsloth/mistral-7b-instruct-bnb-4bit","unsloth/llama-2-7b-bnb-4bit","unsloth/gemma-7b-bnb-4bit","unsloth/gemma-7b-it-bnb-4bit","unsloth/gemma-2b-bnb-4bit","unsloth/gemma-2b-it-bnb-4bit","unsloth/llama-3-8b-bnb-4bit",
] # More models at https://huggingface.co/unslothmodel, tokenizer = FastLanguageModel.from_pretrained(model_name = "unsloth/llama-3-8b-bnb-4bit",max_seq_length = max_seq_length,dtype = dtype,load_in_4bit = load_in_4bit# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf)

在这里插入图片描述

model = FastLanguageModel.get_peft_model(model,r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",],lora_alpha = 16,lora_dropout = 0, # Supports any, but = 0 is optimizedbias = "none", # Supports any, but = "none" is optimized# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long contextrandom_state = 3407,use_rslora = False, # We support rank stabilized LoRAloftq_config = None # And LoftQ
)

在这里插入图片描述

加载hugging face数据集

alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}
"""EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
def formatting_prompts_func(examples):instructions = examples["instruction"]inputs = examples["input"]outputs = examples["output"]texts = []for instruction, input, output in zip(instructions, inputs, outputs):# Must add EOS_TOKEN, otherwise your generation will go on forever!text = alpaca_prompt.format(instruction, input, output) + EOS_TOKENtexts.append(text)return { "text": texts, }
passfrom datasets import load_dataset
dataset = load_dataset("pinzhenchen/alpaca-cleaned-zh", split="train")
dataset = dataset.map(formatting_prompts_func, batched=True,)

在这里插入图片描述
HuggingFace 官网, 点击数据集 Datasets

在这里插入图片描述
搜索数据集 alpaca-cleaned-zh
在这里插入图片描述
复制数据集的名字 pinzhenchen/alpaca-cleaned-zh
在这里插入图片描述
定义training 方法

from trl import SFTTrainer
from transformers import TrainingArgumentstrainer = SFTTrainer(model = model,tokenizer = tokenizer,train_dataset = dataset,dataset_text_field = "text",max_seq_length = max_seq_length,dataset_num_proc = 2,packing = False, # Can make training 5x faster for short sequences.args = TrainingArguments(per_device_train_batch_size = 2,gradient_accumulation_steps = 4,warmup_steps = 5,max_steps = 60,learning_rate = 2e-4,fp16 = not torch.cuda.is_bf16_supported(),bf16 = torch.cuda.is_bf16_supported(),logging_steps = 1,optim = "adamw_8bit",weight_decay = 0.01,lr_scheduler_type = "linear",seed = 3407,output_dir = "outputs",),
)

打印显存使用情况

#@title Show current memory stats
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"GPU = (gpu_stats.name). Max memory = (max_memory) GB.")
print(f"(start_gpu_memory) GB of memory reserved.")

在这里插入图片描述
开始FineTune

trainer_stats = trainer.train()

在这里插入图片描述

#@title Show final memory and time stats
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
used_memory_for_lora = round(used_memory - start_gpu_memory, 3)
used_percentage = round(used_memory / max_memory*100, 3)
lora_percentage = round(used_memory_for_lora / max_memory*100, 3)
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
print(f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.")
print(f"Peak reserved memory = {used_memory} GB.")
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
print(f"Peak reserved memory % of max memory = {used_percentage} %.")
print(f"Peak reserved memory for training % of max memory = {lora_percentage} GB.")

在这里插入图片描述
用fineTune 过的model,做问答

# alpaca_prompt = Copied from above
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer([alpaca_prompt.format("如何保持健康", # instruction"", # input"", # output - leave this blank for generation!)], return_tensors = "pt"
).to("cuda")outputs = model.generate(**inputs, max_new_tokens = 64, use_cache=True)
tokenizer.batch_decode(outputs)

在这里插入图片描述
TextStreamer 流式一个字一个字地打印结果

# alpaca_prompt = Copied from above
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer([alpaca_prompt.format("续写这段话", # instruction"天天向上,好好学习", # input"", # output - leave this blank for generation!)], return_tensors = "pt"
).to("cuda")from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens=128)

在这里插入图片描述
保存model到google drive 和 HuggingFace

model.save_pretrained("lora_model") # local saving
model.push_to_hub("zgpeace/lora_model", token="####") # online saving

google drive
在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/671956.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一起深度学习(AlexNet网络)

AlexNet神经网络 代码实现: 代码实现: import torch from torch import nn from d2l import torch as d2lnet nn.Sequential(# 采用了11*11的卷积核来捕捉对象,因为原始输入数据比较大#步幅为4 ,可减少输出的高度核宽度。#输出通…

SeetaFace6人脸检测C++代码实现Demo

SeetaFace6包含人脸识别的基本能力:人脸检测、关键点定位、人脸识别,同时增加了活体检测、质量评估、年龄性别估计,并且顺应实际应用需求,开放口罩检测以及口罩佩戴场景下的人脸识别模型。 官网地址:https://github.co…

检测服务器环境,实现快速部署。适用于CRMEB_PRO/多店

运行效果如图: 最近被好多人问,本来运行的好好的,突然swoole就启动不了了。 本工具为爱发电,如果工具正好解决了您的需求。我会很开心 代码如下: """本脚本为爱发电by:网前雨刮器 """…

FreeBSD RISCV 在QEME中实践-网络配置

在前一篇文章中,我们一起进行了FreeBSD RISCV 在QEME中实践 现在,让我们配置好网络吧! 先上结论:用默认配置启动即可,网络就加载好了,只是不能ping罢了。因为不能ping,以为网络没通&#xff0…

印度人Torque Minimum 方式的改进

1 局限性分析 印度人Torque Minimum 复现 上一篇文章分析了印度人那篇Torque Minimum文章的方法,他的方法存在一些局限性; 1:第一个就是6次转矩脉动的抑制,导致了较大的电流谐波畸变率; 2:第二个就是6次…

【C语言】整数,浮点数数据在内存中的存储

Tiny Spark get dazzling some day. 目录 1. 整数在内存中的存储1.1 原码、反码、补码1.1 大小端存储1.2.1 字节序分类1.2.2 判断字节序 2. 浮点数在内存中的存储2.1 浮点数的存储形式2.2 浮点数的 “ 存 ”2.2.1 S2.2.2 E2.2.3 F 2.3 浮点数的 “ 取 ”2.3.1 S2.3.2 E、F 3. 浮…

爱普生S2D13V52快速实现车载显示屏高分辨率显示系统

随着时代的发展,汽车驾驶位前中央的显示屏承担的功能也越来越多,从一开始仅仅是显示仪表盘的信息,再到作为显示屏辅助倒车,再到如今和一块平板一样可公认娱乐,显示屏的大小有些时候成为了一辆车够不够好的体现。随着汽…

【前端】HTML基础(3)

文章目录 前言一、HTML基础1、表格标签1.1 基本使用1.2 合并单元格 2、列表标签2.1 无序列表2.2 有序列表2.3 自定义列表 3、 表单标签2.1 form标签2.2 input标签2.3 label标签2.4 select标签2.5 textarea标签 4、无语义标签5、HTML特殊字符 前言 这篇博客仅仅是对HTML的基本结…

Apache POI入门学习

Apache POI入门学习 官网地址 excel中使用到的类读取excel表格内容表格内容maven依赖方式一测试结果 方式二测试结果 向excel中写入数据方式一方式二方式三测试结果 从 Excel 工作表中的公式单元格读取数据测试结果 Excel 工作表中写入公式单元格从受密码保护的Excel中读取数据…

2024年03月 Scratch 图形化(三级)真题解析#中国电子学会#全国青少年软件编程等级考试

Scratch图形化等级考试(1~4级)全部真题・点这里 一、单选题(共18题,共50分) 第1题 运行程序后,角色一定不会说出的数字是?( ) A:2 B:4 C:6 D:8 答案:A 程序中随机数的取值最小为 2,最大为 20 ,那么随机数加上 2 之后的结果的最小值为 4 ,最大值为 22 。所…

查看微信小程序主包大小

前言 略 查看微信小程序主包大小 在微信开发者工具右上角找到“详情->基本信息” 查看微信小程序主包构成 通过微信开发者工具中的“代码依赖分析”工具查看

第十三章 计算机网络

这里写目录标题 1.网络设备2.协议簇2.1电子邮件(传输层)2.2地址解析(网际层)2.3DHCP(动态主动配置协议)2.4URL(统一资源定位器)2.5IP地址和子网掩码 1.网络设备 物理层:中继器,集线器(多路中继器) 数据链路层:网桥,交换机(多端口…