【量化课程】08_2.深度学习量化策略基础实战

文章目录

    • 1. 深度学习简介
    • 2. 常用深度学习模型架构
      • 2.1 LSTM 介绍
      • 2.2 LSTM在股票预测中的应用
    • 3. 模块分类
      • 3.1 卷积层
      • 3.2 池化层
      • 3.3 全连接层
      • 3.4 Dropout层
    • 4. 深度学习模型构建
    • 5. 策略实现

1. 深度学习简介

深度学习是模拟人脑进行分析学习的神经网络。

2. 常用深度学习模型架构

  • 深度神经网络(DNN)
  • 卷积神经网络(CNN)
  • 马尔可夫链(MC)
  • 玻尔兹曼机(BM)
  • 生成对抗网络(GAN)
  • 长短期记忆网络(LSTM)

2.1 LSTM 介绍

长短期记忆网络(LSTM)是一种常用于处理序列数据的循环神经网络(RNN)的变体,被广泛应用于自然语言处理、语音识别、时间序列预测等任务中。

LSTM通过门控机制解决了传统RNN中的梯度问题,能够有效地处理序列数据,并在多个领域取得了显著的成果。

2.2 LSTM在股票预测中的应用

LSTM在量化预测股票方面被广泛应用。它可以利用历史股票价格和交易量等数据来学习股票价格的趋势和波动,从而进行未来的预测。

在股票预测中,LSTM可以接受时间序列数据作为输入,并通过递归地更新隐藏状态来捕获长期依赖关系。它可以通过学习历史价格和交易量等特征的模式,对未来的股票价格进行预测。

通过将股票历史数据作为训练样本,LSTM可以学习不同时间尺度上的模式,例如每日、每周或每月的波动情况。它还可以利用技术指标、市场情绪数据等辅助信息,以提高预测准确性。

在实际应用中,研究人员和投资者通过训练LSTM模型来预测股票的价格趋势、波动情况和交易信号。这些预测结果可以用于制定投资策略、风险管理和决策制定等方面。

需要注意的是,股票市场受到多种因素的影响,包括经济因素、政治事件和市场心理等。LSTM在股票预测中的应用并不是完全准确的,因此在实际应用中需要结合其他因素进行综合分析和决策。此外,过度依赖LSTM模型所做的预测结果也可能存在风险,投资者仍需谨慎分析和评估。

3. 模块分类

3.1 卷积层

卷积层是深度学习中的基本层之一,通过卷积操作对输入数据进行特征提取和特征映射,并利用参数共享和局部连接等机制提高模型的参数效率。

  • 一维卷积层
  • 二维卷积层
  • 三维卷积层

3.2 池化层

平均池化和最大池化是卷积神经网络中常用的池化操作,用于减少特征图的维度,并提取出重要的特征信息。

  • 平均池化
  • 最大池化

3.3 全连接层

全连接层是神经网络中的一种常见层类型。在全连接层中,每个输入神经元与输出层中的每个神经元都有连接。每个连接都有一个权重,用于调整输入神经元对于输出神经元的影响。全连接层的输出可以通过激活函数进行非线性变换。

3.4 Dropout层

Dropout层是一种正则化技术,用于在训练过程中随机丢弃一部分输入神经元,以减少过拟合的风险。Dropout层通过随机断开神经元之间的连接来实现丢弃操作。在每个训练迭代中,Dropout层会随机选择一些神经元进行丢弃,并在前向传播和反向传播过程中不使用这些丢弃的神经元。

4. 深度学习模型构建

  1. 通过模块堆叠将输入层、中间层、输出层连接,然后构建模块进行初始化
  2. 训练模型
  3. 模型预测

5. 策略实现

本部分将介绍如何在BigQuant实现一个基于LSTM的选股策略

from biglearning.api import M
from biglearning.api import tools as T
from bigdatasource.api import DataSource
from biglearning.module2.common.data import Outputs
from zipline.finance.commission import PerOrder
import pandas as pd
import math# LSTM模型训练和预测
def m4_run_bigquant_run(input_1, input_2, input_3):df =  input_1.read_pickle()feature_len = len(input_2.read_pickle())df['x'] = df['x'].reshape(df['x'].shape[0], int(feature_len), int(df['x'].shape[1]/feature_len))data_1 = DataSource.write_pickle(df)return Outputs(data_1=data_1)# LSTM模型训练和预测的后处理
def m4_post_run_bigquant_run(outputs):return outputs# LSTM模型训练和预测
def m8_run_bigquant_run(input_1, input_2, input_3):df =  input_1.read_pickle()feature_len = len(input_2.read_pickle())df['x'] = df['x'].reshape(df['x'].shape[0], int(feature_len), int(df['x'].shape[1]/feature_len))data_1 = DataSource.write_pickle(df)return Outputs(data_1=data_1)# LSTM模型训练和预测的后处理
def m8_post_run_bigquant_run(outputs):return outputs# 模型评估和排序
def m24_run_bigquant_run(input_1, input_2, input_3):pred_label = input_1.read_pickle()df = input_2.read_df()df = pd.DataFrame({'pred_label':pred_label[:,0], 'instrument':df.instrument, 'date':df.date})df.sort_values(['date','pred_label'],inplace=True, ascending=[True,False])return Outputs(data_1=DataSource.write_df(df), data_2=None, data_3=None)# 模型评估和排序的后处理
def m24_post_run_bigquant_run(outputs):return outputs# 初始化策略
def m19_initialize_bigquant_run(context):# 从options中读取数据context.ranker_prediction = context.options['data'].read_df()# 设置佣金费率context.set_commission(PerOrder(buy_cost=0.0003, sell_cost=0.0013, min_cost=5))stock_count = 30# 根据股票数量设置权重context.stock_weights = T.norm([1 / math.log(i + 2) for i in range(0, stock_count)])context.max_cash_per_instrument = 0.9context.options['hold_days'] = 5# 处理每个交易日的数据
def m19_handle_data_bigquant_run(context, data):# 获取当日的预测结果ranker_prediction = context.ranker_prediction[context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')]is_staging = context.trading_day_index < context.options['hold_days']cash_avg = context.portfolio.portfolio_value / context.options['hold_days']cash_for_buy = min(context.portfolio.cash, (1 if is_staging else 1.5) * cash_avg)cash_for_sell = cash_avg - (context.portfolio.cash - cash_for_buy)positions = {e.symbol: p.amount * p.last_sale_pricefor e, p in context.perf_tracker.position_tracker.positions.items()}if not is_staging and cash_for_sell > 0:equities = {e.symbol: e for e, p in context.perf_tracker.position_tracker.positions.items()}instruments = list(reversed(list(ranker_prediction.instrument[ranker_prediction.instrument.apply(lambda x: x in equities and not context.has_unfinished_sell_order(equities[x]))])))for instrument in instruments:context.order_target(context.symbol(instrument), 0)cash_for_sell -= positions[instrument]if cash_for_sell <= 0:breakbuy_cash_weights = context.stock_weightsbuy_instruments = list(ranker_prediction.instrument[:len(buy_cash_weights)])max_cash_per_instrument = context.portfolio.portfolio_value * context.max_cash_per_instrumentfor i, instrument in enumerate(buy_instruments):cash = cash_for_buy * buy_cash_weights[i]if cash > max_cash_per_instrument - positions.get(instrument, 0):cash = max_cash_per_instrument - positions.get(instrument, 0)if cash > 0:context.order_value(context.symbol(instrument), cash)# 准备工作
def m19_prepare_bigquant_run(context):pass# 获取2020年至2021年股票数据
m1 = M.instruments.v2(start_date='2020-01-01',end_date='2021-01-01',market='CN_STOCK_A',instrument_list=' ',max_count=0
)# 使用高级自动标注器获取标签
m2 = M.advanced_auto_labeler.v2(instruments=m1.data,label_expr="""
shift(close, -5) / shift(open, -1)-1clip(label, all_quantile(label, 0.01), all_quantile(label, 0.99))where(shift(high, -1) == shift(low, -1), NaN, label)
""",start_date='',end_date='',benchmark='000300.SHA',drop_na_label=True,cast_label_int=False
)# 标准化标签数据
m13 = M.standardlize.v8(input_1=m2.data,columns_input='label'
)# 输入特征
m3 = M.input_features.v1(features="""close_0/mean(close_0,5)
close_0/mean(close_0,10)
close_0/mean(close_0,20)
close_0/open_0
open_0/mean(close_0,5)
open_0/mean(close_0,10)
open_0/mean(close_0,20)"""
)# 抽取基础特征
m15 = M.general_feature_extractor.v7(instruments=m1.data,features=m3.data,start_date='',end_date='',before_start_days=30
)# 提取派生特征
m16 = M.derived_feature_extractor.v3(input_data=m15.data,features=m3.data,date_col='date',instrument_col='instrument',drop_na=True,remove_extra_columns=False
)# 标准化基础特征
m14 = M.standardlize.v8(input_1=m16.data,input_2=m3.data,columns_input='[]'
)# 合并标签和特征
m7 = M.join.v3(data1=m13.data,data2=m14.data,on='date,instrument',how='inner',sort=False
)# 将特征转换成二进制数据
m26 = M.dl_convert_to_bin.v2(input_data=m7.data,features=m3.data,window_size=5,feature_clip=5,flatten=True,window_along_col='instrument'
)# 使用m4_run_bigquant_run函数运行缓存模式
m4 = M.cached.v3(input_1=m26.data,input_2=m3.data,run=m4_run_bigquant_run,post_run=m4_post_run_bigquant_run,input_ports='',params='{}',output_ports=''
)# 获取2021年至2022年股票数据
m9 = M.instruments.v2(start_date=T.live_run_param('trading_date', '2021-01-01'),end_date=T.live_run_param('trading_date', '2022-01-01'),market='CN_STOCK_A',instrument_list='',max_count=0
)# 抽取基础特征
m17 = M.general_feature_extractor.v7(instruments=m9.data,features=m3.data,start_date='',end_date='',before_start_days=30
)# 提取派生特征
m18 = M.derived_feature_extractor.v3(input_data=m17.data,features=m3.data,date_col='date',instrument_col='instrument',drop_na=True,remove_extra_columns=False
)# 标准化基础特征
m25 = M.standardlize.v8(input_1=m18.data,input_2=m3.data,columns_input='[]'
)# 将特征转换成二进制数据
m27 = M.dl_convert_to_bin.v2(input_data=m25.data,features=m3.data,window_size=5,feature_clip=5,flatten=True,window_along_col='instrument'
)# 使用m8_run_bigquant_run函数运行缓存模式
m8 = M.cached.v3(input_1=m27.data,input_2=m3.data,run=m8_run_bigquant_run,post_run=m8_post_run_bigquant_run,input_ports='',params='{}',output_ports=''
)# 构造LSTM模型的输入层
m6 = M.dl_layer_input.v1(shape='7,5',batch_shape='',dtype='float32',sparse=False,name=''
)# 构造LSTM模型的LSTM层
m10 = M.dl_layer_lstm.v1(inputs=m6.data,units=32,activation='tanh',recurrent_activation='hard_sigmoid',use_bias=True,kernel_initializer='glorot_uniform',recurrent_initializer='Orthogonal',bias_initializer='Zeros',unit_forget_bias=True,kernel_regularizer='None',kernel_regularizer_l1=0,kernel_regularizer_l2=0,recurrent_regularizer='None',recurrent_regularizer_l1=0,recurrent_regularizer_l2=0,bias_regularizer='None',bias_regularizer_l1=0,bias_regularizer_l2=0,activity_regularizer='None',activity_regularizer_l1=0,activity_regularizer_l2=0,kernel_constraint='None',recurrent_constraint='None',bias_constraint='None',dropout=0,recurrent_dropout=0,return_sequences=False,implementation='0',name=''
)# 构造LSTM模型的Dropout层
m12 = M.dl_layer_dropout.v1(inputs=m10.data,rate=0.2,noise_shape='',name=''
)# 构造LSTM模型的全连接层1
m20 = M.dl_layer_dense.v1(inputs=m12.data,units=30,activation='tanh',use_bias=True,kernel_initializer='glorot_uniform',bias_initializer='Zeros',kernel_regularizer='None',kernel_regularizer_l1=0,kernel_regularizer_l2=0,bias_regularizer='None',bias_regularizer_l1=0,bias_regularizer_l2=0,activity_regularizer='None',activity_regularizer_l1=0,activity_regularizer_l2=0,kernel_constraint='None',bias_constraint='None',name=''
)# 构造LSTM模型的Dropout层2
m21 = M.dl_layer_dropout.v1(inputs=m20.data,rate=0.2,noise_shape='',name=''
)# 构造LSTM模型的全连接层2
m22 = M.dl_layer_dense.v1(inputs=m21.data,units=1,activation='tanh',use_bias=True,kernel_initializer='glorot_uniform',bias_initializer='Zeros',kernel_regularizer='None',kernel_regularizer_l1=0,kernel_regularizer_l2=0,bias_regularizer='None',bias_regularizer_l1=0,bias_regularizer_l2=0,activity_regularizer='None',activity_regularizer_l1=0,activity_regularizer_l2=0,kernel_constraint='None',bias_constraint='None',name=''
)# 初始化LSTM模型
m34 = M.dl_model_init.v1(inputs=m6.data,outputs=m22.data
)# 训练LSTM模型
m5 = M.dl_model_train.v1(input_model=m34.data,training_data=m4.data_1,optimizer='RMSprop',loss='mean_squared_error',metrics='mae',batch_size=256,epochs=5,n_gpus=0,verbose='2:每个epoch输出一行记录'
)# 使用LSTM模型进行预测
m11 = M.dl_model_predict.v1(trained_model=m5.data,input_data=m8.data_1,batch_size=1024,n_gpus=0,verbose='2:每个epoch输出一行记录'
)# 使用m24_run_bigquant_run函数运行缓存模式
m24 = M.cached.v3(input_1=m11.data,input_2=m18.data,run=m24_run_bigquant_run,post_run=m24_post_run_bigquant_run,input_ports='',params='{}',output_ports=''
)# 执行交易
m19 = M.trade.v4(instruments=m9.data,options_data=m24.data_1,start_date='',end_date='',initialize=m19_initialize_bigquant_run,handle_data=m19_handle_data_bigquant_run,prepare=m19_prepare_bigquant_run,volume_limit=0.025,order_price_field_buy='open',order_price_field_sell='close',capital_base=1000000,auto_cancel_non_tradable_orders=True,data_frequency='daily',price_type='后复权',product_type='股票',plot_charts=True,backtest_only=False,benchmark='000300.SHA'
)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/67441.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python语言入门简介

一、Python的历史 关键点: Python是一种用途广泛、解释性、面向对象的程序设计语言。 Python是新西兰的Guido van Rossum在1990 年创建的&#xff0c;它以英国流行喜剧“Monty Python的飞行马戏团”命名。van Rossum将Python开发作为一个嗜好&#xff0c;Python 因其简单、简洁…

flutter开发实战-实现左右来回移动的按钮引导动画效果

flutter开发实战-实现左右来回移动的按钮引导动画效果 最近开发过程中需要实现左右来回移动的按钮引导动画效果 一、动画 AnimationController用来控制一个或者多个动画的正向、反向、停止等相关动画操作。在默认情况下AnimationController是按照线性进行动画播放的。Animati…

VBA技术资料MF42:VBA_从Excel中上面的单元格复制公式

【分享成果&#xff0c;随喜正能量】唯有梦想才配让你不安&#xff0c;唯有行动才能解除你的不安.绳锯木断&#xff0c;水滴石穿。也许你现在做的事情很小&#xff0c;只要你能日积月累的坚持下去&#xff0c;才会发现意义非凡。所谓的成功&#xff0c;便是别人失败的时候你还在…

每天一道leetcode:剑指 Offer 13. 机器人的运动范围(中等广度优先遍历剪枝)

今日份题目&#xff1a; 地上有一个m行n列的方格&#xff0c;从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0]的格子开始移动&#xff0c;它每次可以向左、右、上、下移动一格&#xff08;不能移动到方格外&#xff09;&#xff0c;也不能进入行坐标和列坐标的数位之…

ArcGIS入门操作手册

一.ArcGIS安装过程 参考本人博客&#xff1a;保姆级Arcgis安装图文安装教程_追忆苔上雪的博客-CSDN博客 二.ArcGIS植被指数计算 (1)使用工具&#xff1a;栅格计算器 打开软件&#xff0c;右侧搜索栅格计算器打开&#xff0c;要是搜索栏不小心叉掉找不到了&#xff0c;可以通…

从零开始 Spring Cloud 10:Elasticsearch

从零开始 Spring Cloud 10&#xff1a;Elasticsearch 图源&#xff1a;laiketui.com 基础 什么是 Elasticsearch Elasticsearch 是一个开源搜索引擎&#xff0c;可以用它实现从海量数据中对数据的高效查询。 关于 Elasticsearch 的历史渊源以及广泛用途&#xff0c;可以观看…

地理数据的双重呈现:GIS与数据可视化

前一篇文章带大家了解了GIS与三维GIS的关系&#xff0c;本文就GIS话题带大家一起探讨一下GIS和数据可视化之间的关系。 GIS&#xff08;地理信息系统&#xff09;和数据可视化在地理信息科学领域扮演着重要的角色&#xff0c;它们之间密切相关且相互增强。GIS是一种用于采集、…

Spark_Spark中 Stage, Job 划分依据 , Job, Stage, Task 高阶知识

上一篇文章中 &#xff1a; Spark_Spark 中 Stage, Job 划分依据 , Job, Stage, Task 基础知识_spark stage job_高达一号的博客-CSDN博客 主要解读了Stage, job, task 的划分标准&#xff0c;这篇文章将对这些信息进行进一步解读。 一. Job、Stage、Task的概念 在讲Spark的任…

【图像分类】理论篇 (4)图像增强opencv实现

随机旋转 随机旋转是一种图像增强技术&#xff0c;它通过将图像以随机角度进行旋转来增加数据的多样性&#xff0c;从而帮助改善模型的鲁棒性和泛化能力。这在训练深度学习模型时尤其有用&#xff0c;可以使模型更好地适应各种角度的输入。 原图像&#xff1a; 旋转后的图像&…

DevOps系列文章 之 Gitlab+Docker自动部署SpringBoot

1.环境要求 以下服务器的操作系统均为Centos7 服务器A&#xff1a;Gitlab服务器B&#xff1a;GitlabRunner、Docker、docker-compose、Java1.8、maven3.6.3、git ps&#xff1a;这里可以把服务器B的GitlabRunner、Java1.8、maven3.6.3、git单独提出来&#xff0c;独立部署&a…

数据结构:力扣OJ题(每日一练)

题一&#xff1a;有效的括号 给定一个只包括 (&#xff0c;)&#xff0c;{&#xff0c;}&#xff0c;[&#xff0c;] 的字符串 s &#xff0c;判断字符串是否有效。 有效字符串需满足&#xff1a; 左括号必须用相同类型的右括号闭合。左括号必须以正确的顺序闭合。每个右括号…

win10中Docker安装、构建镜像、创建容器、Vscode连接实例

Docker方便一键构建项目所需的运行环境&#xff1a;首先构建镜像(Image)。然后镜像实例化成为容器(Container)&#xff0c;构成项目的运行环境。最后Vscode连接容器&#xff0c;方便我们在本地进行开发。下面以一个简单的例子介绍在win10中实现&#xff1a;Docker安装、构建镜像…