偏微分方程算法之混合边界条件下的差分法

目录

一、研究目标

二、理论推导

三、算例实现

四、结论


一、研究目标

        我们在前几节中介绍了Poisson方程的边值问题,接下来对椭圆型偏微分方程的混合边值问题进行探讨,研究对象为:

\left\{\begin{matrix} -(\frac{\partial^{2}u(x,y)}{\partial x^{2}}+\frac{\partial^{2}u(x,y)}{\partial y^{2}})=f(x,y),(x,y)\in\Omega,\space\space(1)\\ \frac{\partial u(x,y)}{\partial \mathbf{n}}+\lambda(x,y)u=\mu(x,y),(x,y)\in\partial \Omega=\Gamma \end{matrix}\right.

其中,\Omega为矩形区域\Omega=[(x,y)|a\leqslant x\leqslant b,c\leqslant y\leqslant d]f(x,y)\Omega上的连续函数,\mathit{\mathbf{n}}\Gamma上的单位法向量,从而\frac{\partial u(x,y)}{\partial\mathbf{n}}表示方向导数,\lambda(x,y),\mu(x,y)\Gamma的连续函数且\lambda(x,y)非负。对于矩形区域\Omega而言,其边界上的法向量没有统一的表达式,需要对四条边界线段分别讨论。可见:

        在左边界\mathbf{n}_{1}=(-1,0),边界条件为(-\frac{\partial u}{\partial x}+\lambda(x,y)u)|_{(a,y)}=\mu_{1}(a,y)

        在右边界\mathbf{n}_{2}=(1,0),边界条件为(\frac{\partial u}{\partial x}+\lambda(x,y)u)|_{(b,y)}=\mu_{2}(b,y)

        在下边界\mathbf{n}_{3}=(0,-1),边界条件为(-\frac{\partial u}{\partial y}+\lambda(x,y)u)|_{(x,c)}=\mu_{3}(x,c)

        在上边界\mathbf{n}_{4}=(0,1),边界条件为(\frac{\partial u}{\partial y}+\lambda(x,y)u)|_{(x,d)}=\mu_{4}(x,d)

        于是,公式(1)可以具体写为:

\left\{\begin{matrix} -(\frac{\partial^{2}u(x,y)}{\partial x^{2}}+\frac{\partial^{2}u(x,y)}{\partial y^{2}})=f(x,y),(x,y)\in(a,b)\times (c,d),\\ (\frac{\partial u(x,y)}{\partial x}-\lambda(x,y)u)|_{(a,y)}=\varphi_{1}(y),c\leqslant y\leqslant d,\\ (\frac{\partial u(x,y)}{\partial x}+\lambda(x,y)u)|_{(b,y)}=\varphi_{2}(y),c\leqslant y\leqslant d,\\ (\frac{\partial u(x,y)}{\partial y}-\lambda(x,y)u)|_{(x,c)}=\Psi_{1}(x),a\leqslant x\leqslant b,\\ (\frac{\partial u(x,y)}{\partial y})+\lambda(x,y)u)|_{(x,d)},\Psi_{2}(x),a\leqslant x\leqslant b \end{matrix}\right.

二、理论推导

        首先进行矩形区域\Omega的等距剖分,得到各网格节点(x_{i},y_{j}),且x_{i}=a+i\cdot\Delta x,i=0,1,\cdot\cdot\cdot,m\Delta x=(b-a)/my_{j}=c+j\cdot\Delta y,j=0,1,\cdot\cdot\cdot,n\Delta y=(c-d)/n。然后弱化原方程,使其仅在离散节点上成立,从而有

\left\{\begin{matrix} -(\frac{\partial^{2}u(x,y)}{\partial x^{2}}+\frac{\partial^{2}u(x,y)}{\partial y^{2}})|_{(x_{i},y_{j})}=f(x_{i},y_{j}),1\leqslant i\leqslant m-1,1\leqslant j\leqslant n-1,\\ \frac{\partial u(x,y)}{\partial x}|_{(x_{0},y_{j})}-\lambda(x_{0},y_{j})u(x_{0},y_{j})=\varphi_{1}(y_{j}),0\leqslant j\leqslant n, \\ \frac{\partial u(x,y)}{\partial x}|_{(x_{m},y_{j})}+\lambda(x_{m},y_{j})u(x_{m},y_{j})=\varphi_{2}(y_{j}),0\leqslant j\leqslant n, \\ \frac{\partial u(x,y)}{\partial y}|_{(x_{i},y_{0})}-\lambda(x_{i},y_{0})u(x_{i},y_{0})=\Psi_{1}(x_{i}),0\leqslant i\leqslant m, \\ \frac{\partial u(x,y)}{\partial y}|_{(x_{i},y_{n})}+\lambda(x_{i},y_{n})u(x_{i},y_{n})=\Psi_{2}(x_{i}),0\leqslant i\leqslant m. \end{matrix}\right.

        将上式中的一阶、二阶偏导数分别用关于一阶导数的中心差商和关于二阶导数的中心差商来近似,得

\left\{\begin{matrix} -(\frac{u(x_{i-1},y_{j})-2u(x_{i},y_{j})+u(x_{i+1},y_{j})}{\Delta x^{2}}+\frac{u(x_{i},y_{j-1})-2u(x_{i},y_{j})+u(x_{i},y_{j+1})}{\Delta y^{2}})\\ =f(x_{i},y_{j})+O(\Delta x^{2}+\Delta y^{2}),1\leqslant i\leqslant m-1,1\leqslant j\leqslant n-1,\\ \frac{u(x_{1},y_{j})-u(x_{-1},y_{j})}{2\Delta x}-\lambda(x_{0},y_{j})u(x_{0},y_{j})=\varphi_{1}(y_{j})+O(\Delta x^{2}),0\leqslant j\leqslant n,\\ \frac{u(x_{m+1},y_{j})-u(x_{m-1},y_{j})}{2\Delta x}+\lambda(x_{m},y_{j})u(x_{m},y_{j})=\varphi(y_{j})+O(\Delta x^{2}),0\leqslant j\leqslant n,\\ \frac{u(x_{i},y_{1})-u(x_{i},y_{-1})}{2\Delta y}-\lambda(x_{i},y_{0})u(x_{i},y_{0})=\Psi_{1}(x_{i})+O(\Delta y^{2}),0\leqslant i\leqslant m,\\ \frac{u(x_{i},y_{n+1})-u(x_{i},y_{n-1})}{2\Delta y}+\lambda(x_{i},y_{n})u(x_{i},y_{n})=\Psi_{2}(x_{i})+O(\Delta y^{2}),0\leqslant i\leqslant m. \end{matrix}\right.

        用数值解代替精确解并忽略高阶项,得到以下数值格式:

\left\{\begin{matrix} -(\frac{u_{i-1,j}-2u_{i,j}+u_{i+1,j}}{\Delta x^{2}}+\frac{u_{i,j-1}-2u_{i,j}+u_{i,j+1}}{\Delta y^{2}})=f_{i,j},1\leqslant i\leqslant m-1,1\leqslant j\geqslant n-1,\\ u_{1,j}-u_{-1,j}=2\Delta x(\varphi_{1}(y_{j})+\lambda_{0,j}u_{0,j}),0\leqslant j\leqslant n,\\ u_{m+1,j}-u_{m-1,j}=2\Delta x(\varphi_{2}(y_{j})-\lambda_{m,j}u_{m,j}),0\leqslant j\leqslant n,\\ u_{i,1}-u_{i,-1}=2\Delta y(\Psi_{1}(x_{i})+\lambda_{i,0}u_{i,0}),0\leqslant i\leqslant m,\\ u_{i,n+1}-u_{i,n-1}=2\Delta y(\Psi_{2}(x_{i})-\lambda_{i,n}u_{i,n}),0\leqslant i\leqslant m. \end{matrix}\right.(2)

其中,\lambda_{i,j}=\lambda(x_{i},y_{j}),f_{i,j}=f(x_{i},y_{j})。该格式的局部截断误差为O(\Delta x^{2}+\Delta y^{2}),同时需要处理其中的下标越界问题。由于函数的连续性,我们认为公式(2)中的第1式对i=0也成立,即有

-(\frac{u_{-1,j}-2u_{0,j}+u_{1,j}}{\Delta x^{2}}+\frac{u_{0,j-1}-2u_{0,j}+u_{0,j+1}}{\Delta y^{2}})=f_{i,j},1\leqslant j\leqslant n-1

        再成公式(2)的第2式中解出u_{-1,j}=u_{1,j}-2\Delta x(\varphi_{1}(y_{j})+\lambda_{0,j}u_{0,j})代入上式,得

-\frac{2u_{1,j}-2(1+\Delta x\lambda_{0,j})u_{0,j}}{\Delta x^{2}}-\frac{u_{0,j-1}-2u_{0,j}+u_{0,j+1}}{\Delta y^{2}}=f_{i,j}-\frac{2}{\Delta x}\varphi_{1}(y_{j}),1\leqslant j\leqslant n-1

同样,设公式(2)中的第1式分别对i=m,j=0,j=n成立,再分别从公式(2)的第3、4、5式中解出u_{m+1,j},u_{i,-1},u_{i,n+1}代入前面刚得到的方程,就可以处理掉越界下标,得到以下格式:

\left\{\begin{matrix} -\frac{u_{i-1,j}-2u_{i,j}+u_{i+1,j}}{\Delta x^{2}}-\frac{u_{i,j-1}-2u_{i,j}+u_{i,j+1}}{\Delta y^{2}}=f_{i,j},1\leqslant i\leqslant m-1,1\leqslant j\leqslant n-1,\\ -\frac{2u_{1,j}-2(1+\Delta x\lambda_{0,j})u_{0,j}}{\Delta x^{2}}-\frac{u_{0,j-1}-2u_{0,j}+u_{0,j+1}}{\Delta y^{2}}=f_{0,j}-\frac{2}{\Delta x}\varphi_{1}(y_{j}),1\leqslant j\leqslant n-1,\\ -\frac{2u_{m-1,j}-2(1+\Delta x\lambda_{m,j})u_{m,j}}{\Delta x^{2}}-\frac{u_{m,j-1}-2u_{m,j}+u_{m,j+1}}{\Delta y^{2}}=f_{m,j}+\frac{2}{\Delta x}\varphi_{2}(y_{j}),1\leqslant j\leqslant n-1,\\ -\frac{u_{i-1,0}-2u_{i,0}+u_{i+1,0}}{\Delta x^{2}}-\frac{2u_{i,1}-2(1+\Delta y\lambda_{i,0})u_{i,0}}{\Delta y^{2}}=f_{i,0}-\frac{2}{\Delta y}\Psi_{1}(x_{i}),1\leqslant i\leqslant m-1,\\ -\frac{u_{i-1,n}-2u_{i,n}+u_{i+1,n}}{\Delta x^{2}}-\frac{2u_{i,n-1}-2(1+\Delta y\lambda_{i,n})u_{i,n}}{\Delta y^{2}}=f_{i,n}+\frac{2}{\Delta y}\Psi_{2}(x_{i}),1\leqslant i\leqslant m-1 \end{matrix}\right.

        至此我们共有(m+1)x(n+1)个待求量u_{i,j},0\leqslant i\leqslant m,0\leqslant j\leqslant n,而现有(m-1)x(n-1)个关于内节点的方程,2(n-1)个关于左、右边界上的节点(不含端点)的方程及2(m-1)个关于上、下边界上的节点(也不含端点)的方程,还需要补充

(m+1)(n+1)-(m-1)(n-1)-2(n-1)-2(m-1)=4

个方程,也就是关于矩形区域的4个顶点的方程。为此,设公式(2)中第1式对i=0,j=0成立,即

-\frac{u_{-1,0}-2u_{0,0}+u_{1,0}}{\Delta x^{2}}-\frac{u_{0,-1}-2u_{0,0}+u_{0,1}}{\Delta y^{2}}=f_{0,0} \; (3)

        然后再从公式(2)的第2式和第4式中分别解出u_{-1,0}=u_{1,0}-2\Delta x(\varphi_{1}(y_{0})+\lambda_{0,0}u_{0,0})u_{0,-1}=u_{0,1}-2\Delta y(\Psi_{1}(x_{0})+\lambda_{0,0}u_{0,0}),代入公式(3)中,得到\Omega左下顶点处的方程:

-\frac{2u_{1,0}-2(1+\Delta x\lambda_{0,0})u_{0,0}}{\Delta x^{2}}-\frac{2u_{0,1}-2(1+\Delta y\lambda_{0,0})u_{0,0}}{\Delta y^{2}}=f_{0,0}-\frac{2}{\Delta x}\varphi_{1}(y_{0})-\frac{2}{\Delta y}\Psi_{1}(x_{0})

上式可以简化为

-\frac{2u_{1,0}}{\Delta x^{2}}+[\frac{2(1+\Delta x\lambda_{0,0})}{\Delta x^{2}}+\frac{2(1+\Delta y\lambda_{0,0})}{\Delta y^{2}}]u_{0,0}-\frac{2u_{0,1}}{\Delta y^{2}}=f_{0,0}-\frac{2}{\Delta x}\varphi_{1}(y_{0})-\frac{2}{\Delta y}\Psi_{1}(x_{0})

        同样,设公式(2)中第1式分别对i=m,j=0i=0,j=ni=m,j=n成立,然后再从公式(2)中第3式和第4式解出u_{m+1,0},u_{m,-1},u_{-1,n},u_{0,n+1},u_{m+1,n},u_{m,n+1}分别代入刚才得到的3个方程,就得到\Omega的右下顶点、左上顶点、和右上顶点处的方程,这样,我们就有了完整的处理带导数边界条件的椭圆型方程的数值格式:

\left\{\begin{matrix} -\frac{u_{i,j-1}}{\Delta y^{2}}-\frac{u_{i-1,j}}{\Delta x^{2}}+2[\frac{1}{\Delta x^{2}}+\frac{1}{\Delta y^{2}}]u_{i,j}-\frac{u_{i+1,j}}{\Delta x^{2}}-\frac{u_{i,j+1}}{\Delta y^{2}}=f_{i,j},1\leqslant i\leqslant m-1,1\leqslant j\leqslant n-1,\\ -\frac{u_{0,j-1}}{\Delta y^{2}}+[\frac{2(1+\Delta x\lambda_{0,j})}{\Delta x^{2}}+\frac{2}{\Delta y^{2}}]u_{0,j}-\frac{2u_{1,j}}{\Delta x^{2}}-\frac{u_{0,j+1}}{\Delta y^{2}}=f_{0,j}-\frac{2}{\Delta x}\varphi_{1}(y_{j}),1\leqslant j\leqslant n-1,\\ -\frac{u_{m,j-1}}{\Delta y^{2}}-\frac{2u_{m-1,j}}{\Delta x^{2}}+[\frac{2(1+\Delta x\lambda_{m,j})}{\Delta x^{2}}+\frac{2}{\Delta y^{2}}]u_{m,j}-\frac{u_{m,j+1}}{\Delta y^{2}}=f_{m,j}+\frac{2}{\Delta x}\varphi_{2}(y_{j}),1\leqslant j\leqslant n-1,\\ -\frac{u_{i-1,0}}{\Delta x^{2}}+[\frac{2}{\Delta x^{2}}+\frac{2(1+\Delta y\lambda_{i,0})}{\Delta y^{2}}]u_{i,0}-\frac{u_{i+1,0}}{\Delta x^{2}}-\frac{2u_{i,1}}{\Delta y^{2}}=f_{i,0}-\frac{2}{\Delta y}\Psi_{1}(x_{i}),1\leqslant i\leqslant m-1,\\ -\frac{u_{i-1,n}}{\Delta x^{2}}-\frac{2u_{i,n-1}}{\Delta y^{2}}+[\frac{2}{\Delta x^{2}}+\frac{2(1+\Delta y\lambda_{i,n})}{\Delta y^{2}}]u_{i,n-\frac{u_{i+1,n}}{\Delta x^{2}}}=f_{i,n}+\frac{2}{\Delta y}\Psi_{2}(x_{i}),1\leqslant i\leqslant m-1,\\ [\frac{2(1+\Delta x\lambda_{0,0})}{\Delta x^{2}}+\frac{2(1+\Delta y \lambda_{0,0})}{\Delta y^{2}}]u_{0,0}-\frac{2u_{1,0}}{\Delta x^{2}}-\frac{2u_{0,1}}{\Delta y^{2}}=f_{0,0}-\frac{2}{\Delta x}\varphi_{1}(y_{0})-\frac{2}{\Delta y}\Psi_{1}(x_{0}),\\ -\frac{2u_{m-1,0}}{\Delta x^{2}}+[\frac{2(1+\Delta x\lambda_{m,0})}{\Delta x^{2}}+\frac{2(1+\Delta y \lambda_{m,0})}{\Delta y^{2}}]u_{m,0}-\frac{2u_{m,1}}{\Delta y^{2}}=f_{m,0}+\frac{2}{\Delta x}\varphi_{2}(y_{0})-\frac{2}{\Delta y}\Psi_{1}(x_{m}),\\ -\frac{2u_{0,n-1}}{\Delta y^{2}}+[\frac{2(1+\Delta x\lambda_{0,n})}{\Delta x^{2}}+\frac{2(1+\Delta y\lambda_{0,n})}{\Delta y^{2}}]u_{0,n}-\frac{2u_{1,n}}{\Delta x^{2}}=f_{0,n}-\frac{2}{\Delta x}\varphi_{1}(y_{n})+\frac{2}{\Delta y}\Psi_{2}(x_{0}),\\ -\frac{2u_{m,n-1}}{\Delta y^{2}}-\frac{2u_{m-1,n}}{\Delta x^{2}}+[\frac{2(1+\Delta x\lambda_{m,n})}{\Delta x^{2}}+\frac{2(1+\Delta y\lambda_{m,n})}{\Delta y^{2}}]u_{m,n}=f_{m,n}+\frac{2}{\Delta x}\varphi_{2}(y_{n})+\frac{2}{\Delta y}\Psi_{2}(x_{m}). \end{matrix}\right.

        记\beta =\frac{1}{\Delta x^{2}},\gamma=\frac{1}{\Delta y^{2}},\alpha=2(\frac{1}{\Delta x^{2}}+\frac{1}{\Delta y^{2}}),\xi=\frac{2}{\Delta x},\eta=\frac{2}{\Delta y},有

\begin{Bmatrix} -\gamma u_{i,j-1}-\beta u_{i-1,j}+\alpha u_{i,j}-\beta u_{i+1,j}-\gamma u_{i,j+1}=f_{i,j},1\leqslant i\leqslant m-1,1\leqslant j\leqslant n-1,\\ -\gamma u_{0,j-1}+[\alpha+\xi \lambda_{0,j}]u_{0,j}-2\beta u_{1,j}-\gamma u_{0,j+1}=f_{0,j}-\xi\varphi_{1}(y_{j}),1\leqslant j\leqslant n-1,\\ -\gamma u_{m,j-1}-2\beta u_{m-1,j}+[\alpha+\xi\lambda_{m,j}]u_{m,j}-\gamma u_{m,j+1}=f_{m,j}+\xi \varphi_{2}(y_{j}),1\leqslant j\leqslant n-1,\\ -\beta u_{i-1,0}+[\alpha+\eta\lambda_{i,0}]u_{i,0}-\beta u_{i+1,0}-2\gamma u_{i,1}=f_{i,0}-\eta\Psi_{1}(x_{i}),1\leqslant i\leqslant m-1,\\ -2\gamma u_{i,n-1}-\beta u_{i-1,n}+[\alpha+\eta\lambda_{i,n}]u_{i,n}-\beta u_{i+1,n}=f_{i,n}+\eta\Psi_{2}(x_{i}),1\leqslant i\leqslant m-1,\\ [\alpha+(\xi+\eta)\lambda_{0,0}]u_{0,0}-2\beta u_{1,0}-2\gamma u_{0,1}=f_{0,0}-\xi\varphi_{1}(y_{0})-\eta\Psi_{1}(x_{0}),\\ -2\beta u_{m-1,0}+[\alpha+(\xi+\eta)\lambda_{m,0}]u_{m,0}-2\gamma u_{m,1}=f_{m,0}+\xi\varphi_{2}(y_{0})-\eta\Psi_{1}(x_{m}),\\ -2\gamma u_{0,n-1}+[\alpha+(\xi+\eta)\lambda_{0,n}]u_{0,n}-2\beta u_{1,n}=f_{0,n}-\xi \varphi_{1}(y_{n})+\eta\Psi_{2}(x_{0}),\\ -2\gamma u_{m,n-1}-2\beta u_{m-1,n}+[\alpha+(\xi+\eta)\lambda_{m,n}]u_{m,n}=f_{m,n}+\xi\varphi_{2}(y_{n})+\eta\Psi_{2}(x_{m}). \end{Bmatrix}\;(4)

        为计算分别,可将上述方程组写成矩阵形式。

        首先,将公式(4)中第4、6、7式写成:

\begin{pmatrix} \alpha+(\xi+\eta)\lambda_{0,0} & -2\beta & & & & & \\ -\beta & \alpha+\eta\lambda_{1,0} & -\beta & & & & \\ & -\beta & \alpha+\eta\lambda_{2,0} & -\beta & & & \\ & & \ddots & \ddots & \ddots & & \\ & & & -\beta & \alpha+\eta\lambda_{m-2,0} & -\beta & \\ & & & & -\beta & \alpha+\eta\lambda_{m-1,0} & -\beta\\ & & & & & -2\beta & \alpha+(\xi+\eta)\lambda_{m,0} \end{pmatrix}+\begin{pmatrix} u_{0,0}\\ u_{1,0}\\ u_{2,0}\\ \vdots\\ u_{m-2,0}\\ u_{m-1,0}\\ u_{m,0} \end{pmatrix}+\begin{pmatrix} -2\gamma & & & & & & \\ & -2\gamma & & & & & \\ & & -2\gamma & & & & \\ & & & -2\gamma & & & \\ & & & & -2\gamma & & \\ & & & & & -2\gamma & \\ & & & & & & -2\gamma \end{pmatrix}\begin{pmatrix} u_{0,1}\\ u_{1,1}\\ u_{2,1}\\ \vdots\\ u_{m-2,1}\\ u_{m-1,1}\\ u_{m,1} \end{pmatrix}=\begin{pmatrix} f_{0,0}-\eta\Psi_{1}(x_{0})-\xi\varphi_{1}(y_{0})\\ f_{1,0}-\eta\Psi_{1}(x_{1})\\ f_{2,0}-\eta\Psi_{1}(x_{2})\\ \vdots\\ f_{m-2,0}-\eta\Psi_{1}(x_{m-2})\\ f_{m-1,0}-\eta\Psi_{1}(x_{m-1})\\ f_{m,0}-\eta\Psi_{1}(x_{m})-\xi\varphi_{2}(y_{0}) \end{pmatrix} \; (5)

         上面的式子可以简记为

C\mathbf{u_{0}}+2A\mathbf{u}_{1}=\mathbf{f}_{0}

其中,A=-\gamma II为m+1阶单位矩阵,且C为公式(5)最左端的三对角矩阵,\mathbf{f}_{0}为公式(5)右端的向量,\mathbf{u}_{j}=(u_{0,j},u_{1,j},\cdot\cdot\cdot ,u_{m-1,j},u_{m,j})^{T},0\leqslant j\leqslant n。接着,公式(4)中的第1,2,3式可以写成

\begin{pmatrix} -\gamma & & & & & & \\ & -\gamma & & & & & \\ & & -\gamma & & & & \\ & &\ddots &\ddots &\ddots & & \\ & & & & -\gamma & & \\ & & & & & -\gamma & \\ & & & & & & -\gamma \end{pmatrix}\begin{pmatrix} u_{0,j-1}\\ u_{1,j-1}\\ u_{2,j-1}\\ \vdots\\ u_{m-2,j-1}\\ u_{m-1,j-1}\\ u_{m,j-1} \end{pmatrix}+\begin{pmatrix} \alpha+\xi\lambda_{0,j} & -2\beta & & & & & \\ -\beta & \alpha & -\beta & & & & \\ & -\beta & \alpha & -\beta & & & \\ & & \ddots & \ddots & \ddots & & \\ & & & -\beta & \alpha & -\beta & \\ & & & & -\beta & \alpha & -\beta\\ & & & & & -2\beta & \alpha+\xi\lambda_{m,j} \end{pmatrix}\begin{pmatrix} u_{0,j}\\ u_{1,j}\\ u_{2,j}\\ \vdots\\ u_{m-2,j}\\ u_{m-1,j}\\ u_{m,j} \end{pmatrix}+\begin{pmatrix} -\gamma & & & & & & \\ & -\gamma & & & & & \\ & & -\gamma & & & & \\ & &\ddots &\ddots &\ddots & & \\ & & & & -\gamma & & \\ & & & & & -\gamma & \\ & & & & & & -\gamma \end{pmatrix}\begin{pmatrix} u_{0,j+1}\\ u_{1,j+1}\\ u_{2,j+1}\\ \vdots\\ u_{m-2,j+1}\\ u_{m-1,j+1}\\ u_{m,j+1} \end{pmatrix}=\begin{pmatrix} f_{0,j}-\xi \varphi_{1}(y_{j})\\ f_{1,j}\\ f_{2,j}\\ \vdots\\ f_{m-2,j}\\ f_{m-1,j}\\ f_{m,j}+\xi \varphi_{2}(y_{j}) \end{pmatrix}\;(6),1\leqslant j\leqslant n-1

         该式可以简记为

A\mathbf{u}_{j-1}+B_{j}\mathbf{u}_{j}+A\mathbf{u}_{j+1}=\mathbf{f}_{j},1\leqslant j\leqslant n-1

其中,B_{j}为公式(6)中的三对角矩阵,\mathbf{f}_{j}为公式(6)右端的向量。最后,公式(4)的第5、8、9式可以写成

\begin{pmatrix} -2\gamma & & & & & & \\ & -2\gamma & & & & & \\ & & -2\gamma & & & & \\ & & \ddots& \ddots& \ddots& & \\ & & & & -2\gamma & & \\ & & & & & -2\gamma & \\ & & & & & & -2\gamma \end{pmatrix}\begin{pmatrix} u_{0,n-1}\\ u_{1,n-1}\\ u_{2,n-1}\\ \vdots\\ u_{m-2,n-1}\\ u_{m-1,n-1}\\ u_{m,n-1} \end{pmatrix}+\begin{pmatrix} \alpha+(\xi+\eta)\lambda_{0,n} & -2\beta & & & & & \\ -\beta & \alpha+\eta\lambda_{1,n} & -\beta & & & & \\ & -\beta & \alpha+\eta\lambda_{2,n} & -\beta & & & \\ & & \ddots & \ddots & \ddots & & \\ & & & -\beta & \alpha+\eta\lambda_{m-2,n} & -\beta & \\ & & & & -\beta & \alpha+\eta\lambda_{m-1,n} & -\beta\\ & & & & & -2\beta & \alpha+(\xi+\eta)\lambda_{m,n} \end{pmatrix}\begin{pmatrix} u_{0,n}\\ u_{1,n}\\ u_{2,n}\\ \vdots\\ u_{m-2,n}\\ u_{m-1,n}\\ u_{m,n} \end{pmatrix}==\begin{pmatrix} f_{0,n}+\eta\Psi_{1}(x_{0})-\xi\varphi_{1}(y_{n})\\ f_{1,n}+\eta\Psi_{2}(x_{1})\\ f_{2,n}-\eta\Psi_{2}(x_{2})\\ \vdots\\ f_{m-2,n}+\eta\Psi_{2}(x_{m-2})\\ f_{m-1,n}+\eta\Psi_{2}(x_{m-1})\\ f_{m,n}+\eta\Psi_{2}(x_{m})+\xi\varphi_{2}(y_{n}) \end{pmatrix} \; (7)

        该式可以简记为

2A\mathbf{u}_{n-1}+D\mathbf{u}_{n}=\mathbf{f}_{n}

其中,D为公式(7)中的三对角矩阵,\mathbf{f}_{n}为公式(7)右端的向量。于是,由公式(5)、(6)、(7)可得到公式(4)写成块三对角矩阵为

\begin{pmatrix} C & 2A & & & & & \\ A & B_{1} & A & & & & \\ & A & B_{2} & A & & & \\ & & \ddots & \ddots & \ddots & & \\ & & & A & B_{m-2} & A & \\ & & & & A & B_{m-1} & A\\ & & & & & 2A & D \end{pmatrix}\begin{pmatrix} \mathbf{u}_{0}\\ \mathbf{u}_{1}\\ \mathbf{u}_{2}\\ \vdots\\ \mathbf{u}_{m-2}\\ \mathbf{u}_{m-1}\\ \mathbf{u}_{m} \end{pmatrix}=\begin{pmatrix} \mathbf{f}_{0}\\ \mathbf{f}_{1}\\ \mathbf{f}_{2}\\ \vdots\\ \mathbf{f}_{m-2}\\ \mathbf{f}_{m-1}\\ \mathbf{f}_{m} \end{pmatrix}\;(8)

        采用Gauss-Seidel迭代法求解公式(8)。

三、算例实现

        用差分格式-公式(8)求解椭圆型方程混合边值问题:

\left\{\begin{matrix} -(\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}})=(\pi^{2}-1)e^{x}sin(\pi y),0<x<2,0<y<1,\\ (\frac{\partial u(x,y)}{\partial x}-(x^{2}+y^{2})u)|_{(0,y)}=(1-y^{2})sin(\pi y),0\leqslant y\leqslant 1,\\ (\frac{\partial u(x,y)}{\partial x}+(x^{2}+y^{2})u)|_{(2,y)}=(5+y^{2})e^{2}sin(\pi y),0\leqslant y\leqslant 1,\\ (\frac{\partial u(x,y)}{\partial y}-(x^{2}+y^{2})u)|_{(x,c)}=\pi e^{x},0\leqslant x\leqslant 1,\\ (\frac{\partial u(x,y)}{\partial y}+(x^{2}+y^{2})u)|_{(x,d)}=-\pi e^{x},0\leqslant x\leqslant 1 \end{matrix}\right.

已知精确解为u(x,y)=e^{x}sin(\pi y)。分别取步长为\Delta x=\Delta y=\frac{1}{16}\Delta x=\Delta y=\frac{1}{32},输出6个节点(0.5i,0.25)(0.5i,0.50),i=1,2,3处的数值解,并给出误差,要求在各节点处最大误差的迭代误差限为0.5\times10^{-10}

代码如下:


#include <cmath>
#include <stdlib.h>
#include <stdio.h>
#define pi 3.14159265359int main(int argc, char*argv[])
{int m,n,i,j,k;double xa,xb,ya,yb,dx,dy,alpha,beta,gamma,maxerr;double *x,*y,**u,**v,**lambda,*d,kexi,eta,temp;double f(double x, double y);double lambda_function(double x, double y);double phi1(double y);double phi2(double y);double psi1(double x);double psi2(double x);double exact(double x, double y);xa=0.0;xb=2.0;ya=0.0;yb=1.0;m=64;n=32;printf("m=%d,n=%d.\n",m,n);dx=(xb-xa)/m;dy=(yb-ya)/n;beta=1.0/(dx*dx);gamma=1.0/(dy*dy);alpha=2*(beta+gamma);kexi=2.0/dx;eta=2.0/dy;x=(double*)malloc(sizeof(double)*(m+1));for(i=0;i<=m;i++)x[i]=xa+i*dx;y=(double*)malloc(sizeof(double)*(n+1));for(j=0;j<=n;j++)y[j]=ya+j*dy;u=(double**)malloc(sizeof(double*)*(m+1));v=(double**)malloc(sizeof(double*)*(m+1));lambda=(double**)malloc(sizeof(double*)*(m+1));for(i=0;i<=m;i++){u[i]=(double*)malloc(sizeof(double)*(n+1));v[i]=(double*)malloc(sizeof(double)*(n+1));lambda[i]=(double*)malloc(sizeof(double)*(n+1));}for(i=0;i<=m;i++){for(j=0;j<=n;j++){u[i][j]=0.0;v[i][j]=0.0;lambda[i][j]=lambda_function(x[i],y[j]);}}d=(double*)malloc(sizeof(double)*(m+1));k=0;do{maxerr=0.0;for(i=0;i<=m;i++)d[i]=f(x[i],y[0])-eta*psi1(x[i]);d[0]=d[0]-kexi*phi1(y[0]);d[m]=d[m]+kexi*phi2(y[0]);v[0][0]=(d[0]+2*gamma*u[0][1]+2*beta*u[1][0])/(alpha+(kexi+eta)*lambda[0][0]);for(i=1;i<m;i++)v[i][0]=(d[i]+2*gamma*u[i][1]+beta*(v[i-1][0]+u[i+1][0]))/(alpha+eta*lambda[i][0]);v[m][0]=(d[m]+2*gamma*u[m][1]+2*beta*v[m-1][0])/(alpha+(kexi+eta)*lambda[m][0]);for(j=1;j<n;j++){for(i=0;i<=m;i++){d[i]=f(x[i],y[j]);}d[0]=d[0]-kexi*phi1(y[j]);d[m]=d[m]+kexi*phi2(y[j]);v[0][j]=(d[0]+gamma*(u[0][j+1]+v[0][j-1])+2*beta*u[1][j])/(alpha+kexi*lambda[0][j]);for(i=1;i<m;i++){v[i][j]=(d[i]+gamma*(v[i][j-1]+u[i][j+1])+beta*(v[i-1][j]+u[i+1][j]))/alpha;}v[m][j]=(d[m]+gamma*(v[m][j-1]+u[m][j+1])+2*beta*v[m-1][j])/(alpha+kexi*lambda[m][j]);}for(i=0;i<=m;i++)d[i]=f(x[i],y[n])+eta*psi2(x[i]);d[0]=d[0]-kexi*phi1(y[n]);d[m]=d[m]+kexi*phi2(y[n]);v[0][n]=(d[0]+2*gamma*v[0][n-1]+2*beta*u[1][n])/(alpha+(kexi+eta)*lambda[0][n]);for(i=1;i<m;i++)v[i][n]=(d[i]+2*gamma*v[i][n-1]+beta*(v[i-1][n]+u[i+1][n]))/(alpha+eta*lambda[i][n]);v[m][n]=(d[m]+2*gamma*v[m][n-1]+2*beta*v[m-1][n])/(alpha+(kexi+eta)*lambda[m][n]);for(i=0;i<=m;i++){for(j=0;j<=n;j++){temp=fabs(u[i][j]-v[i][j]);if(temp>maxerr)maxerr=temp;u[i][j]=v[i][j];}}k=k+1;}while((maxerr>0.5*1e-10)&&(k<=1e+8));printf("k=%d\n",k);k=m/4;for(i=k;i<m;i=i+k){printf("(%.2f,0.25), y=%f, err=%.4e.\n",x[i],u[i][n/4],fabs(exact(x[i],y[n/4])-u[i][n/4]));}k=m/4;for(i=k;i<m;i=i+k){printf("(%.2f,0.50), y=%f, err=%.4e.\n",x[i],u[i][n/2],fabs(exact(x[i],y[n/2])-u[i][n/2]));}for(i=0;i<=m;i++){free(u[i]);free(v[i]);free(lambda[i]);}free(u);free(v);free(lambda);free(x);free(y);free(d);return 0;
}double f(double x, double y)
{return (pi*pi-1)*exp(x)*sin(pi*y);
}
double lambda_function(double x, double y)
{return x*x+y*y;
}
double phi1(double y)
{return (1-y*y)*sin(pi*y);
}
double phi2(double y)
{return (5.0+y*y)*exp(2.0)*sin(pi*y);
}
double psi1(double x)
{return pi*exp(x);
}
double psi2(double x)
{return -pi*exp(x);
}
double exact(double x, double y)
{return exp(x)*sin(pi*y);
}

\Delta x=\Delta y=\frac{1}{16}时,计算结果如下:

m=32,n=16.
k=4323
(0.50,0.25), y=1.152179, err=1.3643e-02.
(1.00,0.25), y=1.911016, err=1.1100e-02.
(1.50,0.25), y=3.162159, err=6.8738e-03.
(0.50,0.50), y=1.638607, err=1.0115e-02.
(1.00,0.50), y=2.711255, err=7.0265e-03.
(1.50,0.50), y=4.479936, err=1.7526e-03.

\Delta x=\Delta y=\frac{1}{32}时,计算结果如下:

m=64,n=32.
k=16007
(0.50,0.25), y=1.162412, err=3.4097e-03.
(1.00,0.25), y=1.919341, err=2.7745e-03.
(1.50,0.25), y=3.167313, err=1.7193e-03.
(0.50,0.50), y=1.646193, err=2.5286e-03.
(1.00,0.50), y=2.716524, err=1.7575e-03.
(1.50,0.50), y=4.481249, err=4.3972e-04.

四、结论

        从计算结果可知,当步长减小为1/2时,误差减小为原来的1/4,可见该数值格式是二阶收敛的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/685461.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Flink 部署模式

目录 概述 部署模式 会话模式&#xff08;Session Mode&#xff09; 单作业模式(Per-Job Mode) 应用模式(Application Mode) 运行模式&#xff08;资源管理模式&#xff09; Standalone运行模式 会话模式部署 应用模式部署 Yarn运行模式 会话模式部署 单作业模式部…

电脑设置在哪里打开?Window与Mac双系统操作指南

随着科技的不断发展&#xff0c;电脑已经成为我们日常生活和工作中不可或缺的一部分。然而&#xff0c;对于许多初学者来说&#xff0c;如何找到并熟悉电脑的设置界面可能是一个挑战。特别是对于那些同时使用Windows和Mac双系统的用户来说&#xff0c;更是需要一篇详尽的指南来…

景源畅信电商:抖音小店开店的步骤有哪些?

在移动互联网高速发展的今天&#xff0c;利用短视频平台进行商品营销已成为一种潮流。抖音作为其中的佼佼者&#xff0c;吸引了无数商家纷纷入驻&#xff0c;希望通过这个巨大的流量池实现产品推广和销售。然而&#xff0c;想要在抖音上开设一家小店并非想象中那么简单&#xf…

论文阅读:《Sequence can Secretly Tell You What to Discard》,减少推理阶段的 kv cache

目前各类大模型都支持长文本&#xff0c;例如 kimi chat 以及 gemini pro&#xff0c;都支持 100K 以及更高的上下文长度。但越长的上下文&#xff0c;在推理过程中需要存储的 kv cache 也越多。假设&#xff0c;数据的批次用 b 表示&#xff0c;输入序列的长度仍然用 s 表示&a…

教你解决PUBG绝地求生延迟高 网络延迟高的问题

在《绝地求生》&#xff08;PUBG&#xff09;这款备受全球玩家追捧的战术竞技游戏中&#xff0c;其逼真的战场环境和心跳加速的生存竞赛无不让人为之痴迷。不过&#xff0c;有些玩家在经历了一场惊心动魄的对局后&#xff0c;却面临了一个不大不小的麻烦&#xff1a;比赛圆满落…

摄像头控制器芯片算法研究与实现

摘至于《摄像头控制器芯片算法研究与实现》--华南理工大学 微电子学与固体电子学 以上的方法&#xff0c;可以在安防设备快起应用中借鉴&#xff0c;快速调整AE曝光参数达到比较合适的亮度范围&#xff0c;省略AE调整过程中的亮度平滑过程。

美团mtgsig 1.1算法分析

声明 本文以教学为基准、本文提供的可操作性不得用于任何商业用途和违法违规场景。 本人对任何原因在使用本人中提供的代码和策略时可能对用户自己或他人造成的任何形式的损失和伤害不承担责任。 如有侵权,请联系我进行删除。 这里只是我分析的分析过程,以及一些重要点的记录…

【核武器】2024 年美国核武器-20240507

2024年5月7日,《原子科学家公报》发布了最新版的2024美国核武器手册 Hans M. Kristensen, Matt Korda, Eliana Johns, and Mackenzie Knight, United States nuclear weapons, 2024, Bulletin of the Atomic Scientists, 80:3, 182-208, DOI: https://doi.org/10.1080/00963…

YOLOv9改进策略 | 添加注意力篇 | 利用YOLO-Face提出的SEAM注意力机制优化物体遮挡检测(附代码 + 修改教程)

一、本文介绍 本文给大家带来的改进机制是由YOLO-Face提出能够改善物体遮挡检测的注意力机制SEAM&#xff0c;SEAM&#xff08;Spatially Enhanced Attention Module&#xff09;注意力网络模块旨在补偿被遮挡面部的响应损失&#xff0c;通过增强未遮挡面部的响应来实现这一目…

常见物联网面试题详解

物联网一直是非常火热的行业&#xff0c;G端如智慧城市、智慧工厂、智慧园区、智慧水利、智慧矿山等行业&#xff0c;都会涉及到物联网&#xff0c;基本都是软硬一体&#xff0c;因此当面试相关企业时&#xff0c;物联网平台是面试企业重点考察的项&#xff0c;小伙伴如果从事相…

什么是FMEA的分析范围?——FMEA软件

免费试用FMEA软件-免费版-SunFMEA FMEA的分析范围广泛而深入&#xff0c;涵盖了产品设计、制造过程、供应链管理以及使用和维修等多个方面。 产品设计是FMEA分析的重要一环。在设计阶段&#xff0c;FMEA能够帮助工程师识别潜在的设计缺陷&#xff0c;并预测这些缺陷可能对产品…

速度围观|使用分布式企业级任务调度平台,到底有多香?

任务调度平台是关键的软件基础设施&#xff0c;专门设计用于自动化、高效和可靠地安排及执行预定的后台任务。谷歌云首席决策工程师Kasim Khan曾提到&#xff1a;“在云计算环境中&#xff0c;自动化和效率是关键。”任务调度平台通过优化资源使用和集中管理功能&#xff0c;提…