[Algorithm][递归][斐波那契数列模型][第N个泰波那契数][三步问题][使用最小花费爬楼][解码方法]详细讲解

目录

  • 1.第 N 个泰波那契数
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 2.三步问题
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 3.使用最小花费爬楼梯
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 4.解码方法
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现


1.第 N 个泰波那契数

1.题目链接

  • 第 N 个泰波那契数

2.算法原理详解

  • 题目解析
    请添加图片描述

  • 思路

    • 确定状态表示 -> dp[i]的含义
      • i个泰波那契数的值
    • 推导状态转移方程
      • dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]
    • 初始化
      • dp[0] = 0, dp[1] = 1, dp[2] = 1
    • 确定填表顺序:从左向右
    • 确定返回值:dp[n]
  • 空间优化:滚动数组
    请添加图片描述


3.代码实现

// v1.0 动态规划
int tribonacci(int n) 
{// 边界情况处理if(n == 0 || n == 1) return n;vector<int> dp(n + 1, 0);dp[1] = dp[2] = 1;for(int i = 3; i <= n; i++){dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];}return dp[n];
}
-------------------------------------------------------------------
// v2.0 动态规划 + 滚动数组空间优化
int tribonacci(int n) 
{// 边界情况处理if(n == 0 || n == 1) return n;int a = 0, b = 1, c = 1, ret = 1;for(int i = 3; i <= n; i++){ret = a + b + c;a = b, b = c, c = ret; // 滚动数组}return ret;
}

2.三步问题

1.题目链接

  • 三步问题

2.算法原理详解

  • 题目解析
    请添加图片描述

  • 思路

    • 确定状态表示 -> dp[i]的含义
      • 到达i位置时,一共有多少种方法
    • 推导状态转移方程
      • dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]
    • 初始化
      • dp[1] = 1, dp[2] = 2, dp[3] = 4
    • 确定填表顺序:从左向右
    • 确定返回值:dp[n]

3.代码实现

int waysToStep(int n) 
{// 边界情况处理if(n == 1 || n == 2) return n;if(n == 3) return 4;const int MOD = 1e9 + 7;vector<int> dp(n + 1, 0);dp[1] = 1, dp[2] = 2, dp[3] = 4;for(int i = 4; i <= n; i++){dp[i] = ((dp[i - 1] + dp[i - 2]) % MOD + dp[i - 3]) % MOD;}return dp[n];
} 

3.使用最小花费爬楼梯

1.题目链接

  • 使用最小花费爬楼梯

2.算法原理详解

  • 本题给出两种思路,本质相同,只是思考的方向不同
  • 思路一
    • 确定状态表示 -> dp[i]的含义
      • i位置为结尾
      • 到达i位置时,最小花费
    • 推导状态转移方程
      • dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])
    • 初始化
      • dp[0] = dp[1] = 0
    • 确定填表顺序:从左向右
    • 确定返回值:dp[n]
  • 思路二
    • 确定状态表示 -> dp[i]的含义
      • i位置为起点
      • i位置出发,到达楼顶,此时的最小花费
    • 推导状态转移方程
      • dp[i] = cost[i] + min(dp[i + 1], dp[i + 2])
    • 初始化
      • dp[n - 1] = cost[n - 1], dp[n - 2] = cost[n - 2]
    • 确定填表顺序:从右向左
    • 确定返回值:min(dp[0], dp[1])

3.代码实现

// v1.0 以i位置为结尾
int minCostClimbingStairs(vector<int>& cost) 
{int n = cost.size();vector<int> dp(n + 1);for(int i = 2; i <= n; i++){dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);}return dp[n];
}
----------------------------------------------------------------------------
// v2.0 以i位置为起点
int minCostClimbingStairs(vector<int>& cost) 
{int n = cost.size();vector<int> dp(n);dp[n - 1] = cost[n - 1], dp[n - 2] = cost[n - 2];for(int i = n - 3; i >= 0; i--){dp[i] = cost[i] + min(dp[i + 1], dp[i + 2]);}return min(dp[0], dp[1]);
}

4.解码方法

1.题目链接

  • 解码方法

2.算法原理详解

  • 思路
    • 确定状态表示 -> dp[i]的含义

      • i位置为结尾时,解码方法的总数
    • 推导状态转移方程

      • 如果条件都成立dp[i] = dp[i - 1] + dp[i - 2]
        请添加图片描述
    • 初始化

      • dp[0]:只解码一个字符
        • 1 <-- 1<=a<=9
        • 0 <-- 0
      • dp[1]:只解码两个字符
        • 0 <-- 解码不出来
        • 1 <-- 两个解码出一个
        • 2 <-- 两个解码出一个 + 一个解码出一个
    • 确定填表顺序:从左向右

    • 确定返回值:dp[n - 1]

  • 优化边界及初始化dp表多开一个"虚拟结点"
    • 相当于把原来dp[1]放到了后面填表的逻辑当中了,不用进行繁琐的初始化了
    • 注意事项
      • 虚拟节点里面的值,要保证后面填表时是正确的
      • 下标的映射关系
    • 怎样处理?
      • 此时dp[1]的初始化相当于原来的dp[0]的初始化,不用做特殊处理
      • dp[0] = 1做特殊处理
        • 因为此时的dp[2]在统一的逻辑里面,会去看dp[0]dp[1]的值
          • 如果条件都成立dp[2] = dp[0] + dp[1]
        • 此时如果dp[0] == 0,相当于dp[2]前面少了一种可能
          请添加图片描述

3.代码实现

// v1.0
int numDecodings(string s) 
{int n = s.size();vector<int> dp(n, 0);dp[0] = s[0] != '0';// 处理边界情况if(s.size() == 1) return dp[0];// 一个位置解码出来一个if(s[0] != '0' && s[1] != '0'){dp[1]++;}// 两个位置解码出来一个int tmp = (s[0] - '0') * 10 + s[1] - '0';if(tmp >= 10 && tmp <= 26){dp[1]++;}// Dynamic Planfor(int i = 2; i < n; i++){// 一个位置解码出来一个if(s[i] != '0'){dp[i] += dp[i - 1];}// 两个位置解码出来一个int tmp = (s[i - 1] - '0') * 10 + s[i] - '0';if(tmp >= 10 && tmp <= 26){dp[i] += dp[i - 2];}}return dp[n - 1];
}
----------------------------------------------------------------------
// v2.0 优化
int numDecodings(string s) 
{int n = s.size();vector<int> dp(n + 1, 0);dp[0] = 1;dp[1] = s[0] != '0';// Dynamic Planfor(int i = 2; i <= n; i++){// 一个位置解码出来一个if(s[i - 1] != '0'){dp[i] += dp[i - 1];}// 两个位置解码出来一个int tmp = (s[i - 2] - '0') * 10 + s[i - 1] - '0';if(tmp >= 10 && tmp <= 26){dp[i] += dp[i - 2];}}return dp[n];
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/687245.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

idea-自我常见配置

1. 主题配置 2. 显示方法分隔符 Editor->General->Appearance 3. 忽略大小写提示 Editor->General->Code Completion 4. 自动导包 Editor->general->Auto Import 5. 取消单行显示Tabs Editor->General->Editor Tabs 效果如下图&#xff1a; 6. 设置…

【Golang】基于 excelize 的 Excel 工具包

目录 1. 安装excelize库2. Excel工具代码2.1 初始化Excel对象2.2. 常用操作2.2.1 设置窗格冻结2.2.2 设置工作表名称2.2.3 创建工作表2.2.4 设置单元格值2.2.5 设置单元格样式2.2.6 合并单元格2.2.7 设置行高和列宽 3.使用示例4.完整代码5.总结 在日常的开发中&#xff0c;我们…

杰发科技AC7801——ADC之Bandgap和内部温度计算

0. 参考 电流模架构Bandgap设计与仿真 bandgap的理解&#xff08;内部带隙电压基准&#xff09; ​ ​ 虽然看不懂这些公式&#xff0c;但是比较重要的一句应该是这个&#xff1a;因为传统带隙基准的输出值为1.2V ​ 1. 使用 参考示例代码。 40002000是falsh控制器寄…

c++opencv Project3 - License Plate Detector

俄罗斯车牌识别案例&#xff1a;实时识别车牌&#xff0c;并且读取到指定文件夹中。 惯例先展示结果图&#xff1a; 对于摄像头读取图片进行车牌匹配&#xff0c;原理和人脸识别其实是一致的。 利用训练好的模型进行匹配即可。可参考&#xff1a; 对视频实现人脸识别-CSDN博…

C语言---使用共用体将double型经纬度存储到无符号数组中

1.在上报经纬度时由于数据协议限制需要将double型数据存储到无符号数组中&#xff0c;下边是写了一个简单C程序进行验证&#xff1b; 2.代码示例如下 #include <stdio.h> typedef union {float data;unsigned char arr[4]; } my_data;int main() {my_data test_data {…

滑动窗口篇: 长度最小子数组|无重复字符最长字串

目录 1、滑动窗口算法 1.1 核心概念 1.2 基本步骤 1.3 应用场景 1.4 优势 2. leetcode 209 长度最小子数组 暴力解题思路&#xff1a; 滑动窗口思路&#xff1a; 3、无重复字符的最长子串 暴力解题思路&#xff1a; 滑动窗口思路&#xff1a; 1、滑动窗口算法 滑动…

uniapp开发微信小程序,选择地理位置uni.chooseLocation

<view click"toCommunity">点击选择位置</view>toCommunity() {const that thisuni.getSetting({success: (res) > {const status res.authSetting// 如果当前设置是&#xff1a;不允许&#xff0c;则需要弹框提醒客户&#xff0c;需要前往设置页面…

主机通过带光发端和ops接收端控制屏串口调试记录

场景就是主机电脑使用cutecom通过光纤口再到ops接收端从而控制屏过程 光纤口有个发送端波特率&#xff0c;Ops有接收端波特率&#xff0c;屏有自己的波特率&#xff0c;主机电脑可以通过发串口指令去设置发送端波特率和ops接收端波特率。因为主机只有一个&#xff0c;屏有多种…

概念解析 | ROC曲线:评估分类模型

注1:本文系"概念解析"系列之一,致力于简洁清晰地解释、辨析复杂而专业的概念。本次辨析的概念是:ROC曲线的含义和绘制 概念解析 | ROC曲线:评估分类模型 第一部分:通俗解释 在我们的日常生活中,经常会遇到需要做出判断和选择的情况。比如,当你收到一封邮件时…

OmniPlan Pro 4 for Mac中文激活版:项目管理的新选择

OmniPlan Pro 4 for Mac作为一款专为Mac用户设计的项目管理软件&#xff0c;为用户提供了全新的项目管理体验。其直观易用的界面和强大的功能特性&#xff0c;使用户能够轻松上手并快速掌握项目管理要点。 首先&#xff0c;OmniPlan Pro 4 for Mac支持自定义视图&#xff0c;用…

springboot增删改查

我的记录 RestController RequestMapping("/user") public class UserController {Autowiredprivate UserService userService;GetMapping("/list")public List<User> list(){return userService.list();}//新增PostMapping("/save")publi…

读天才与算法:人脑与AI的数学思维笔记24_预测性文本生成器

1. 起源 1.1. 人类讲故事可能起源于“假如……”这种问答结构 1.2. 讲故事是人类做安全试验的一种方式 1.2.1. 如果你问一个人“假如……”&#xff0c;其实是在探索你的行为对他可能带来的影响 1.3. 最早出现的故事极有可能就源自我们对在周遭混乱的环境中寻找某种秩序的渴…