数据挖掘(二)数据预处理

前言

基于国防科技大学 丁兆云老师的《数据挖掘》
数据挖掘
数据挖掘(一)数据类型与统计

2、数据预处理

在这里插入图片描述

2.1数据清理

缺失值处理:

from sklearn.impute import SimpleImputer# 创建一个SimpleImputer对象,指定缺失值的处理策略(如均值、中位数、众数等)
imputer = SimpleImputer(strategy='mean')  # 可以替换为'median'、'most_frequent'或'constant'# 假设X是包含缺失值的特征矩阵
X = [[1, 2], [np.nan, 3], [7, 6]]# 使用fit_transform方法对特征矩阵进行缺失值处理
X_imputed = imputer.fit_transform(X)# 输出处理后的特征矩阵
print(X_imputed)

离群值处理:

一般使用基于统计方法的离群值处理:(配合箱线图)

  • 标准差方法(Standard Deviation Method):通过计算数据的均值和标准差,将超过一定标准差阈值的值识别为离群值,并进行处理。
  • 百分位数方法(Percentile Method):基于数据的百分位数,将超过一定百分位数阈值的值识别为离群值,并进行处理。

其它方法还有基于聚类方法的离群值处理,基于监督学习方法的离群值处理等等

2.2 数据集成:

数据集成(Data Integration)是将来自不同来源的数据合并到一个一致的数据集中的过程。在数据集成中,目标是将具有不同结构和格式的数据源整合成一个统一的视图,以便更好地进行数据分析和建模。

在数据集成过程中,可以采用以下方法:

  1. 数据合并(Data Concatenation):将相同结构的数据源按行或列进行合并。例如,使用Pandas库可以使用concat函数或merge函数来合并DataFrame对象。
  2. 数据追加(Data Appending):将不同结构的数据源按行追加到一个数据集中。这通常用于添加新的记录。同样,Pandas库提供了append函数来实现数据追加。
  3. 数据连接(Data Joining):根据特定的键(Key)将不同数据源中的记录连接起来。这类似于数据库中的表连接操作。Pandas库中的merge函数提供了灵活的数据连接功能。
  4. 数据匹配(Data Matching):通过相似性匹配的方法将数据源中的记录进行关联。这可以使用文本匹配、字符串匹配或其他相似性度量来实现。
  5. 实体解析(Entity Resolution):通过识别和解决不同数据源中的相同实体(例如人名、公司名等)来进行数据集成。这可以使用姓名解析、实体链接等方法来实现。

容易出现的问题:数据冗余

解决方案:相关性分析和协方差分析

相关性分析(离散型):

在这里插入图片描述

连续型:

在这里插入图片描述

在这里插入图片描述

协方差只能测量线性关系,不能完全描述两个变量之间的非线性关系。此外,协方差的数值大小受到变量单位的影响,因此通常使用标准化的相关系数(如皮尔逊相关系数)来更准确地衡量变量之间的相关性。

2.3 数据规约:

数据规约(Data Reduction)是数据挖掘和分析中的一个重要步骤,旨在减少数据集的维度或数量,同时保留关键信息,以提高计算效率和模型性能。

2.3.1降维:

在数据分析和机器学习任务中,降维(Dimensionality Reduction)是一种常用的数据规约技术,它通过减少特征的维度来处理高维数据。

在这里插入图片描述

主成分分析(Principal Component Analysis,PCA)是一种常用的降维方法和统计技术,用于将高维数据集转换为低维表示,同时保留数据中的主要信息。PCA的目标是通过线性变换将原始特征空间映射到新的特征空间,使得新的特征具有最大的方差。

以下是PCA的基本步骤:

  1. 标准化数据:首先,对原始数据进行标准化处理,使得每个特征具有零均值和单位方差。这是为了确保不同特征的尺度不会对PCA的结果产生不合理的影响。
  2. 计算协方差矩阵:通过计算标准化后的数据的协方差矩阵,来衡量不同特征之间的相关性。协方差矩阵的元素表示了不同特征之间的协方差。
  3. 计算特征值和特征向量:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。特征值表示了新特征空间中的方差,特征向量表示了原始特征空间到新特征空间的映射关系。
  4. 选择主成分:按照特征值的大小降序排列,选择最大的k个特征值对应的特征向量作为主成分,其中k是希望保留的维度。
  5. 构建投影矩阵:将选择的主成分作为列向量,构建投影矩阵。通过将原始数据与投影矩阵相乘,可以将数据映射到新的低维特征空间。
from sklearn.decomposition import PCA
import numpy as np# 创建一个示例数据集
X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])# 创建PCA对象,并指定降维后的维度为2
pca = PCA(n_components=2)# 对数据集进行PCA降维
X_reduced = pca.fit_transform(X)
# 获取每个主成分的贡献率
variance_ratio = pca.explained_variance_ratio_# 计算累积贡献率
cumulative_variance_ratio = np.cumsum(variance_ratio)# 输出每个主成分的贡献率和累积贡献率
for i, ratio in enumerate(variance_ratio):print(f"Component {i+1}: {ratio:.4f}")print("Cumulative Contribution Rate:")
print(cumulative_variance_ratio)
# 输出降维后的数据
print(X_reduced)

一般取累积贡献比达到85%到95%

2.3.2 降数据(降采样):

下面介绍两种常见的降采样方法:

  1. 随机抽样(Random Sampling):从原始数据集中随机选择一部分样本作为降采样后的数据集。这种方法简单快速,但可能会导致抽样后的数据集不够代表性。
import numpy as np# 创建一个示例数据集
X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])# 随机抽样,降采样至2个样本
num_samples = 2
random_indices = np.random.choice(X.shape[0], size=num_samples, replace=False)
X_reduced = X[random_indices]# 输出降采样后的数据
print(X_reduced)
  1. 分层抽样(Stratified Sampling):保持原始数据集中不同类别样本的比例,从每个类别中抽取一定数量的样本作为降采样后的数据集。这种方法可以保持类别分布的均衡性。
from sklearn.model_selection import train_test_split# 创建一个示例数据集和标签
X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
y = np.array([0, 1, 0, 1])# 分层抽样,保持类别比例,降采样至2个样本
num_samples = 2
X_reduced, _, y_reduced, _ = train_test_split(X, y, train_size=num_samples, stratify=y, random_state=42)# 输出降采样后的数据和标签
print(X_reduced)
print(y_reduced)

2.3.3 数据压缩

2.4 数据转换与离散化:

2.4.1 规范化在这里插入图片描述

最小-最大规范化(Min-Max Normalization):
最小-最大规范化将数据线性地映射到一个指定的范围(通常是[0, 1]或[-1, 1])。公式如下:

X_norm = (X - X_min) / (X_max - X_min)

其中,X为原始数据,X_min和X_max分别为原始数据的最小值和最大值。

import numpy as np# 创建一个示例数据集
X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])# 最小-最大规范化
X_min = np.min(X, axis=0)
X_max = np.max(X, axis=0)
X_norm = (X - X_min) / (X_max - X_min)# 输出规范化后的数据
print(X_norm)

Z-Score规范化(Standardization):
Z-Score规范化将数据转换为均值为0、标准差为1的分布。公式如下:

X_norm = (X - mean) / std

其中,X为原始数据,mean为原始数据的均值,std为原始数据的标准差。

import numpy as np# 创建一个示例数据集
X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])# Z-Score规范化
mean = np.mean(X, axis=0)
std = np.std(X, axis=0)
X_norm = (X - mean) / std# 输出规范化后的数据
print(X_norm)

2.4.2 离散化
在这里插入图片描述

等宽离散化(Equal Width Discretization):
等宽离散化将数据的值范围分成相等宽度的区间。具体步骤如下:

  • 确定要划分的区间个数(例如,n个区间)。
  • 计算数据的最小值(min_value)和最大值(max_value)。
  • 计算每个区间的宽度(width):width = (max_value - min_value) / n。
  • 将数据根据区间宽度映射到相应的区间。
import numpy as np# 创建一个示例数据集
X = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])# 等宽离散化
n_bins = 3
width = (np.max(X) - np.min(X)) / n_bins
bins = np.arange(np.min(X), np.max(X) + width, width)
X_discretized = np.digitize(X, bins)# 输出离散化后的数据
print(X_discretized)

等频离散化(Equal Frequency Discretization):
等频离散化将数据划分为相同数量的区间,每个区间包含相同数量的数据。具体步骤如下:

  • 确定要划分的区间个数(例如,n个区间)。
  • 计算每个区间的数据数量(每个区间应包含总数据数量除以区间个数的数据)。
  • 将数据按照值的大小排序。
  • 按照区间的数据数量依次划分数据。
import numpy as np# 创建一个示例数据集
X = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])# 等频离散化
n_bins = 3
bin_size = len(X) // n_bins
sorted_X = np.sort(X)
bins = [sorted_X[i * bin_size] for i in range(1, n_bins)]
X_discretized = np.digitize(X, bins)# 输出离散化后的数据
print(X_discretized)

聚类离散化(Cluster Discretization):
聚类离散化使用聚类算法将数据划分为不同的簇,每个簇作为一个离散化的值。常用的聚类算法包括K-Means、DBSCAN等。该方法需要根据数据的分布和特点进行参数调整和簇数的选择。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/687625.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

React - Input框绑定动态State和监听onChange事件,输入时失去焦点

React - Input框绑定动态State和监听onChange事件,输入时失去焦点 一. 案例复现二. 解决方案 一. 案例复现 案例代码如下: import React, { useState } from react; import { Table, Input } from antd; const Column Table.Column; const mockData …

Ubuntu24.04安装中文输入法

Ubuntu24.04安装中文输入法 为了更好的体验,请访问个人博客 www.huerpu.cc:7000 一、添加中文语言支持 在安装中文输入法之前,首选要添加中文语言支持。选择System,点击Region & Language。 点击Manage Install Languages。 点击Insta…

LLM记录:五一 Llama 3 超级课堂

LLM记录:五一 Llama 3 超级课堂 想玩大模型,自己又没那个环境,参加五一 Llama 3 超级课堂,简单记录一下llama3-8b的相关体验,实在是邀请不到人,还好后面开放了24G显存,好歹模型能跑起来了&…

【C++ 内存管理】深拷贝和浅拷贝你了解吗?

文章目录 1.深拷贝2.浅拷贝3.深拷贝和浅拷贝 1.深拷贝 🍎 深拷⻉: 是对对象的完全独⽴复制,包括对象内部动态分配的资源。在深拷⻉中,不仅复制对象的值,还会复制对象所指向的堆上的数据。 特点: 🐧① 复制对…

Wallace树乘法器及Verilog实现

一、Wallace树乘法器 Wallace树乘法器就是将多个部分积进行分组,每三个一组,最后如果剩下的部分积个数不够三个的不做处理,然后将各组的部分积进行相加得到和以及进位信息,直到最终只剩下两行部分积,相加后得到最终结…

CATO原理中的数学与魔术(八)——Royal Hummer及进阶一

在前面3篇文章中,我们重点介绍了Baby Hummer及其拓展,拓展主要从4张的plot和单元素集着两个性质出发,相关内容请戳: CATO原理中的数学与魔术(七)——Baby Hummer的拓展二 CATO原理中的数学与魔术&#xff0…

【全部更新】2024数维杯A题完整成品代码文章思路结果分享

A题 多源机会信号建模与导航分析 摘要 全球卫星定位系统(GPS)虽广泛应用于全球定位与导航,但其在室内、隧道以及建筑密集区等复杂环境中的有效性受限。为解决这一局限性,本研究探讨了一种基于机会信号的自主定位导航方法。 机会信…

闭散列哈希表

一、什么是 哈希 ? 1.1 哈希概念 与 哈希冲突 在正式介绍闭散列哈希之前,我们需要明确 哈希 的概念。 哈希 :构造一种数据存储结构,通过函数 HashFunc() ,使 元素的存储位置 与 其对应的键值 建立一一映射关系&…

GA-CNN-LSTM多输入分类|遗传算法-卷积-长短期神经网络|Matlab

目录 一、程序及算法内容介绍: 基本内容: 亮点与优势: 二、实际运行效果: 三、算法介绍: 四、完整程序下载: 一、程序及算法内容介绍: 基本内容: 本代码基于Matlab平台编译&am…

el-checkbox选中后的值为id,组件显示为label中文

直接上代码 方法一 <el-checkbox v-for"item in list" :key"item.id" :label"item.id">{{中文}} </el-checkbox> 方法二 <el-checkbox-group class"flex_check" v-model"rkStatusList" v-for"item…

css 案例 横向滚动渐变

效果 完整代码&#xff1a; <template><view class"content"><view class"tab"><view class"tab-item" v-for"(item,index) in tab" :key"index" click"handlerTab(index)":class"ind…

简单的神经网络

一、softmax的基本概念 我们之前学过sigmoid、relu、tanh等等激活函数&#xff0c;今天我们来看一下softmax。 先简单回顾一些其他激活函数&#xff1a; Sigmoid激活函数&#xff1a;Sigmoid函数&#xff08;也称为Logistic函数&#xff09;是一种常见的激活函数&#xff0c…