Docker 部署 Prometheus 实现一个极简的 QPS 监控

背景 : Prometheus 是近年来最流行的开源监控框架, 其功能强大且易于使用, 拥有各种主流后端语言(Java/Go/Python/Node.js等)与各种场景(如web handler/ k8s/Nginx/MySQL等)的客户端, 并自带图形化显示页面。分享一个快速入门Prometheus 的教程, 实现一个极简的, 后端开发需要特别关注的 QPS 监控。

Docker 部署 Prometheus

命令行输入

 

css

复制代码

docker run -d --name prometheus-node1 -p 9090:9090 bitnami/prometheus:latest

这条命令会创建一个名为 prometheus-node1 的容器, 使用 bitnami/prometheus:latest 的镜像, 宿主机的 9090 端口与容器内的9090端口相通。

修改 prometheus 配置文件

 

bash

复制代码

docker cp prometheus-node1:/opt/bitnami/prometheus/conf/prometheus.yml prometheus.yml

这将 prometheus-node1 容器内的 prometheus.yml 配置文件拷贝出来, 大概长这样:

 

yaml

复制代码

# my global config global: scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute. evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute. # scrape_timeout is set to the global default (10s). # Alertmanager configuration alerting: alertmanagers: - static_configs: - targets: # - alertmanager:9093 # Load rules once and periodically evaluate them according to the global 'evaluation_interval'. rule_files: # - "first_rules.yml" # - "second_rules.yml" # A scrape configuration containing exactly one endpoint to scrape: # Here it's Prometheus itself. scrape_configs: # The job name is added as a label `job=<job_name>` to any timeseries scraped from this config. - job_name: "prometheus" # metrics_path defaults to '/metrics' # scheme defaults to 'http'. static_configs: - targets: ['localhost:9090']

简单看看这个配置文件里面最重要的两个配置。先看 global 下面的两个配置项, scrape_interval: 15 s 表示 每15秒获取一次监控指标(prometheus 中叫 target), evaluation_interval: 15s 表示 每15秒执行一次 rules。 scrape_configs 直接定义了监控的 target. job_name 为 这个 target的名字, static_configs 下面的 tartgets 直接指出了监控的 IP:端口。剩下的配置留给大家自己去学习,出于快速上手 Prometheus的目的,我就不细讲了。

我们下面修改一下 targets 配置, 变成这样:

 

yaml

复制代码

# my global config global: scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute. evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute. # scrape_timeout is set to the global default (10s). # Alertmanager configuration alerting: alertmanagers: - static_configs: - targets: # - alertmanager:9093 # Load rules once and periodically evaluate them according to the global 'evaluation_interval'. rule_files: # - "first_rules.yml" # - "second_rules.yml" # A scrape configuration containing exactly one endpoint to scrape: # Here it's Prometheus itself. scrape_configs: # The job name is added as a label `job=<job_name>` to any timeseries scraped from this config. - job_name: "prometheus" # metrics_path defaults to '/metrics' # scheme defaults to 'http'. static_configs: - targets: ['172.17.0.2:20001'] # 需要监控的 IP:端口

我们修改了 targets 配置, 将他修改成需要监控的 IP:端口, 这里的 172.17.0.2 为另外一个 docker 容器的 IP地址(待会会将), 20001 为要监控的端口(待会会将)

然后将修改后的 配置文件放回 docker 容器

 

bash

复制代码

docker cp prometheus.yml prometheus-node1:/opt/bitnami/prometheus/conf/prometheus.yml

再重启 容器

 

复制代码

docker restart prometheus-node1

写一个 Web Handler 和 Web Client

创建一个 prometheus_demo 目录, 命令行输入

 

go

复制代码

go mod init prometheus_demo go mod tidy

文件目录如下:

 

lua

复制代码

-- prometheus_demo -- go.mod -- main.go -- client --- client.go

其中main.go 为 server 端, client.go 为客户端

其中 main.go 如下:

 

go

复制代码

package main import ( "fmt" "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/client_golang/prometheus/promhttp" "net/http" "time" ) // 只可增加的一个计数器 var req_counter_vec = prometheus.NewCounterVec( prometheus.CounterOpts{ Name: "req_counter_vec", Help: "request counter vector", }, []string{"endpoint"}, ) func main() { prometheus.MustRegister(req_counter_vec) http.Handle("/metrics", promhttp.Handler()) http.HandleFunc("/hello", HelloHandler) errChan := make(chan error) go func() { errChan <- http.ListenAndServe(":20001", nil) }() err := <-errChan if err != nil { fmt.Println("Hello server stop running.") } } func HelloHandler(w http.ResponseWriter, r *http.Request) { path := r.URL.Path req_counter_vec.WithLabelValues(path).Inc() time.Sleep(100 * time.Millisecond) }

服务端比较简单, 定义了 一个 counter vector, 里面装的是prometheus 四种数据类型的 Counter。Name 为 vector 的 名字, help 为详细的解释, 都可以自取。[]string{"endpoint"} 表示以 endpoint 进行区分 vector 内不同的 counter。这就好比一个数组, 用 索引0,1,2 区分数组内的不同元素。

Counter 正如我注释里面写的, 就是一个计数器, 一次只能增加1, 比如每次来一个请求, 那么就增加1。与 Counter 相对的是 Prometheus 的四种数据类型中的 Gauge。 Gauge 可加可减。数据类型 name 为变量名字, help 为变量详细 解释, 随后将这个变量注册一下, 以便被 prometheus 监控到。当然还有另外两种用于直方图的 数据类型 Histogram 和 Summary, 我就不细说了。

随后定义了一个简单的 web handler, 里面干了两件事, 一件是记录将 counter 加 1, withLabelValues 就是就和刚才的 endpoint 相对应, 相当于标记一下这个 vector 中的 哪一个 counter 加一。 另一件事情就是休眠100ms, 不至于太快结束不利于观察。

client.go 如下

 

go

复制代码

package main import ( "log" "net/http" "sync" "time" ) func main() { for { wg := sync.WaitGroup{} for i := 0; i < 50; i++ { wg.Add(1) go func(i int) { defer wg.Done() resp, err := http.Get("http://localhost:20001/hello") if err != nil { log.Println(err) return } resp.Body.Close() }(i) } wg.Wait() time.Sleep(5 * time.Second) } }

客户端就更简单了, 死循环里面开50个 go routine 不断发请求。

随后将 prometheus_demo 文件部署到 docker 中, 如何在 docker 中搭建 go 开发环境可以参考我的另一篇 文章: 保姆级从0到1讲解go远程开发环境搭建(从Docker安装到使用Goland远程部署和调试)。

然后在docker容器中 prometheus_demo 目录 和 prometheus_demo/client 目录下 分别使用下面两个命令运行服务端和客户端

 

go

复制代码

go run main.go go run client.go

打开 Prometheus Web 界面

在宿主机上用浏览器打开 http://localhost:9090/targets?search= 如果可以观察到下面这样, 说明 prometheus 部署成功。

promethus_targets.PNG

注意,上面这幅图一定要启动 prometheus_demo 的 main.go 才能观察得到, 因为 prometheus 监控 20001 端口, 如果 server 端没启动, prometheus 当然啥都监控不到。

下面来看如何监控 QPS, 在宿主机上用浏览器打开, http://localhost:9090/graph

然后在放大镜旁边的框框内输入下面这一串指令

 

ini

复制代码

rate(req_counter_vec{endpoint="/hello"}[15s])

再点击 graph 应该看到下面这样类似的图片

promethus_graph.PNG

解释一下, rate(req_counter_vec{endpoint="/hello"}[15s]) 这句指令是什么意思。 req_counter_vec 就是之前定义的装 counter 的 vector, {endpoint="/hello"} 也就是 HelloHandler 里面记录请求次数的 那个counter, rate 接 [15s] 表示每15秒(和 配置文件里面的15秒保持一致)记录一下 counter 的变化情况(因为 counter只能增加, 所以变化为一个 非负数), 总请求次数除以时间段, 就是一个范围内的 QPS。我们这里并不是1秒, 而是15秒, 也就可以近似看作 QPS。

如果有同学发现没有图形出现, 显示 empty query result, 可能是北京时间和标准时间不同步, 可以勾选 use local time, 或者 调整一 图形界面的窗口时间(我图片上的 5m 和 2022-12-27 20:14:02 那里) 。

还有点同学出现的不是直方图而是一个个小的线段, 这是因为图形的不同展示方式的原因, 可以 点一下 Hide Exemplars 左边的两个小图标。

巨人的肩膀

yunlzheng.gitbook.io/prometheus-…

hub.docker.com/r/bitnami/p…

juejin.cn/post/707865…

cjting.me/2017/03/12/…

  

下面是配套资料,对于做【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴我走过了最艰难的路程,希望也能帮助到你!

软件测试面试小程序
被百万人刷爆的软件测试题库!!!谁用谁知道!!!全网最全面试刷题小程序,手机就可以刷题,地铁上公交上,卷起来!

涵盖以下这些面试题板块:

1、软件测试基础理论 ,2、web,app,接口功能测试 ,3、网络 ,4、数据库 ,5、linux 6、web,app,接口自动化 ,7、性能测试 ,8、编程基础,9、hr面试题 10、开放性测试题,11、安全测试,12、计算机基础

​编辑资料获取方式 :xiaobei_upup,添加时备注“csdn alex”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/697065.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度解析 | PagerDuty Copilot - 运维领域大模型应用场景

【本文作者&#xff1a;擎创科技资深产品专家 布博士】 最近一年多的时间里&#xff0c;生成式人工智能&#xff08;我们通常称为大语言模型&#xff09;已经成为了各行各业提升效率的、降低成本的强大工具。PagerDuty Copilot&#xff0c;作为一款为pagerduty cloud用户提供的…

通俗易通解读Restaking,潜力如何?(bitget钱包玩转)

关于 Restaking 再质押&#xff1a; 1. Restaking 在功能上&#xff0c;将以太坊安全性标准化&#xff0c;并将其“货币化”&#xff0c;Restaking 出售的就是以太坊的安全性&#xff0c;同时&#xff0c;将安全性用质押后的通证数量直观表现出来 2. Restaking 在经济机制上的逐…

下载npm I就包错解决方案

npm i xxxx -S --legacy-peer-deps 如果包错就执行以上命令

UTONMOS:真正的“游戏元宇宙”还有多遥远?

元宇宙来源于科幻小说的概念&#xff0c;已成为真实世界中的流行语。围绕这一新兴概念&#xff0c;一场产、学、研的实践正在展开。 数字化转型中&#xff0c;元宇宙能否担当大任&#xff1f;这些新概念在中国语境下如何落地&#xff1f;本文将深入挖掘国内元宇宙游戏产业的发…

基于百川大语言模型的RSS新闻过滤应用【云服务器+公网网页,随时随地看自己DIY订阅的新闻内容】

背景 目前从公众号、新闻媒体上获得的新闻信息,都是经过算法过滤推荐的,很多时候会感到内容的重复性和低质量,因为他们也要考虑到自己的利益,并非完全考虑用户想要的、对用户有价值的信息。这时,如果要获取自己认为重要的信息,定制化开发自己的筛选算法更好。 效果 素材…

经验分享打开keil工程下载按钮是灰色的解决办法

问题背景 打开一个工程发现download的按钮是灰色的&#xff0c;这种是怎么回事呢&#xff1f; 调研问题 工程中有使用.lib的文件库&#xff0c;而且是一个私有的库&#xff0c;类似这种祖传的工程&#xff0c;一般是能用则用&#xff0c;不能用则弃之不用。 解决问题 在网络…

打印机 ansible配置dhcp和打印机

部署dhcp服务器 主机发送Discover报文 目标为广播地址 同一网段的dhcp收到报文后&#xff0c;dhcp响应一个offer报文 offer报文&#xff1a;dhcp自己的ip地址。和客户端ip以及使用周期&#xff0c;和客户端ip网络参数 最后主机单独发一个request报文 给那个选择的dhcp服务器 &…

面试题:调整数字顺序,使奇数位于偶数前面

题目&#xff1a; 输入一个整数数组&#xff0c;实现一个函数&#xff0c;来调整该数组中数字的顺序 使得所有奇数位于数组的前半部分&#xff0c;所有偶数位于数组的后半部分 算法1&#xff1a; 利用快速排序的一次划分思想&#xff0c;从2端往中间遍历 时间复杂度&#x…

CSS常用滤镜效果

CSS 提供了多种滤镜效果&#xff0c;可以通过 filter 属性应用于 HTML 元素。以下是一些常用的 CSS 滤镜效果&#xff1a; 一、灰度 (Grayscale) 将图像转换为灰度图像。值在 0%&#xff08;原始图像&#xff09;和 100%&#xff08;完全灰度&#xff09;之间。 filter: gra…

springmvc核心流程

核心流程及配置 核心流程 执行流程 用户发送请求到DispatcherServlet前端控制器&#xff0c;前端控制器收到请求后自己不进行处理&#xff0c;而是委托给其他的解析器进行处理&#xff0c;作为统一访问点&#xff0c;进行全局的流程控制 DispatcherServlet调用HandlerMapping映…

图生视频,Stable Diffusion WebUI Forge内置SVD了!

在 Stable Diffusion WebUI Forge 版本中内置了一个SVD插件&#xff0c;也就是 Stable Video Diffusion&#xff08;稳定视频扩散&#xff09;&#xff0c;之前我介绍过这个工具的使用方法&#xff1a;图片生成视频&#xff08;独立部署SVD) 但是当时还不能集成到Stable Diffu…

Docker运行出现iptables: No chain/target/match by that name报错如何解决?

在尝试重启 Docker 容器时遇到的错误信息表明有关 iptables 的配置出了问题。这通常是因为 Docker 需要配置网络&#xff0c;而 iptables 规则没有正确设置或被意外删除。具体到你的错误信息中&#xff0c;报错 iptables: No chain/target/match by that name 表示 Docker 尝试…