凸优化理论学习三|凸优化问题(一)

系列文章目录

凸优化理论学习一|最优化及凸集的基本概念
凸优化理论学习二|凸函数及其相关概念

文章目录

  • 系列文章目录
  • 一、优化问题
    • (一)标准形式的优化问题
    • (二)可行点和最优点
    • (三)局部最优点
    • (四)隐式和显式约束
    • (五)可行性问题
  • 二、凸优化问题
    • (一)标准形式的凸优化问题
    • (二)局部最优与全局最优
    • (三)一些标准凸问题
      • 1、线性规划 (LP)
      • 2、二次规划 (QP)
      • 3、二次约束二次规划 (QCQP)
      • 4、二阶锥规划(SOCP)
      • 4、凸椎形式问题
      • 5、半定规划 (SDP)
      • 6、LP、SOCP与SDP


一、优化问题

(一)标准形式的优化问题

  • 优化目标:minimize f 0 ( x ) f_0(x) f0(x)
  • 约束条件:
    • 非等式约束: f i ( x ) ≤ 0 , i = 1 , . . . , m f_i(x)\leq0,i=1,...,m fi(x)0i=1,...,m
    • 等式约束: h i ( x ) = 0 , i = 1 , . . . , p h_i(x)=0,i=1,...,p hi(x)=0i=1,...,p

(二)可行点和最优点

  • 如果 x ∈ d o m f 0 x ∈ dom f_0 xdomf0 并且满足约束条件,则 x ∈ R n x ∈ R_n xRn 是可行的
  • 最优值 p ∗ = i n f { f 0 ( x ) ∣ f i ( x ) ≤ 0 , i = 1 , . . . , m , h i ( x ) = 0 , i = 1 , . . . , p } p^{*}=inf\{f_0(x)|f_i(x)\leq 0,i=1,...,m,h_i(x)=0,i=1,...,p\} p=inf{f0(x)fi(x)0,i=1,...,m,hi(x)=0,i=1,...,p}
  • 如果问题不可行,则 p ∗ = ∞ p^{*}=∞ p=
  • 如果问题无下界,则 p ∗ = − ∞ p^{*}=-∞ p=
  • 如果 f 0 ( x ) = p ∗ f_0(x)=p^{*} f0(x)=p,则可行点 x x x是最优点
  • X o p t X_{opt} Xopt是最优点的集合

(三)局部最优点

如果存在 R > 0 R > 0 R>0 使得 x 在以下情况下是最优的:

  • m i n i m i z e ( o v e r z ) f 0 ( z ) minimize\ (over\ z)\ \ f_0(z) minimize (over z)  f0(z)
  • s u b j e c t t o subject\ to subject to
    • f i ( z ) ≤ 0 , i = 1 , . . . , m f_i(z)\leq 0,i=1,...,m fi(z)0,i=1,...,m
    • h i ( z ) = 0 , i = 1 , . . . , p h_i(z)=0,i=1,...,p hi(z)=0,i=1,...,p
    • ∣ ∣ z − x ∣ ∣ 2 ≤ R ||z-x||_2\leq R ∣∣zx2R

那么 x x x即为局部最优点。
在这里插入图片描述

(四)隐式和显式约束

  • 显式约束:
    • 非等式约束: f i ( x ) ≤ 0 , i = 1 , . . . , m f_i(x)\leq0,i=1,...,m fi(x)0i=1,...,m
    • 等式约束: h i ( x ) = 0 , i = 1 , . . . , p h_i(x)=0,i=1,...,p hi(x)=0i=1,...,p
    • 如果 m = p = 0 m=p=0 m=p=0,即没有约束,此时问题为无约束问题
  • 标准形式优化问题具有隐式约束
    x ∈ D = ⋂ i = 0 m d o m f i ∩ ⋂ i = 1 p d o m h i x\in D=⋂^m_{i=0}domf_i∩⋂^p_{i=1}domh_i xD=i=0mdomfii=1pdomhi

(五)可行性问题

如果目标函数恒等于零,那么其最优解要么是零(如果可行集非空),要么是∞(如果可行集是空集)。我们称其为可行性问题:

  • 目标:0
  • 约束条件:
    • f i ( x ) ≤ 0 , i = 1 , . . . , m f_i(x)\leq 0,i=1,...,m fi(x)0,i=1,...,m
    • h i ( x ) = 0 , i = 1 , . . . , p h_i(x)=0,i=1,...,p hi(x)=0,i=1,...,p

二、凸优化问题

(一)标准形式的凸优化问题

  • 目标:最小化 f 0 ( x ) f_0(x) f0(x)
  • 约束条件:
    • f i ( x ) ≤ 0 , i = 1 , . . . , m f_i(x)\leq 0,i=1,...,m fi(x)0,i=1,...,m
    • a i T x = b i , i = 1 , . . . , p a_i^Tx=b_i,i=1,...,p aiTx=bi,i=1,...,p

其中:目标和不等式约束 f 0 , f 1 , . . . , f m f_0, f_1, ..., f_m f0,f1,...,fm是凸的;等式约束是仿射的,通常写为 A x = b Ax = b Ax=b;凸优化问题的可行集和最优集是凸的;如果 f 0 f_0 f0 是拟凸的, f 1 , . . . , f m f_1, ..., f_m f1,...,fm 是凸的, h 1 , . . . , h p h_1, ..., h_p h1,...,hp 是仿射的,则问题是拟凸的。

考虑一个标准形式问题的例子:

  • 目标:最小化 f 0 ( x ) = x 1 2 + x 2 2 f_0(x)=x_1^2+x_2^2 f0(x)=x12+x22
  • 约束条件:
    • f 1 ( x ) = x 1 ( 1 + x 2 2 ) ≤ 0 f_1(x)=\frac{x_1}{(1+x_2^2)}\leq 0 f1(x)=(1+x22)x10
    • h 1 ( x ) = ( x 1 + x 2 ) 2 = 0 h_1(x)=(x_1+x_2)^2=0 h1(x)=(x1+x2)2=0

易知目标函数 f 0 f_0 f0是凸的,并且可行集 { ( x 1 , x 2 ) ∣ x 1 = − x 2 ≤ 0 } \{(x_1,x_2)|x_1=-x_2\leq0\} {(x1,x2)x1=x20}也是凸的;但是约束条件 f 1 f_1 f1不是凸的, h 1 h_1 h1不是仿射的,因此它不是一个凸问题。这个问题可以等价为以下凸问题:

  • 目标:最小化 x 1 2 + x 2 2 x_1^2+x_2^2 x12+x22
  • 约束条件:
    • x 1 ≤ 0 x_1\leq 0 x10
    • x 1 + x 2 = 0 x_1+x_2=0 x1+x2=0

(二)局部最优与全局最优

凸问题的任何局部最优点都是(全局)最优的
在这里插入图片描述
可微分 f 0 f_0 f0 的最优性准则:

对于凸问题,点 x x x是最优解的一个充分必要条件:

  • x x x是可行解,即 x x x属于可行集合 X X X
  • 对于任何可行点 y y y,都满足梯度条件: ∇ 2 f 0 ( x ) T ( y − x ) ≥ 0 ∇^2f_0(x)^T(y-x)\geq 0 2f0(x)T(yx)0

这个条件表明,如果 x x x 是最优解,那么任何与之可行的点 y y y 的方向上的梯度内积都是非负的。这实际上是凸问题最优解的一个重要性质,称为一阶条件。这种条件确保了最优解的局部性质,即在最优解附近,目标函数不会在可行方向上下降。另一方面,如果 x x x 满足这个条件,那么根据凸优化的性质,它意味着 x x x 是最优解。这个条件表明,如果梯度与任何可行方向的变化都是非负的,那么该点是全局最优解的候选者。
在这里插入图片描述

如果梯度 ∇ f 0 ( x ) ∇f_0(x) f0(x) 在点 x x x 处非零,则它确实定义了可行集 X X X 在点 x x x 处的一个支撑超平面。

应用举例:

  • 无约束问题: x x x 最小化 f 0 ( x ) f_0 (x) f0(x) 当且仅当 ∇ f 0 ( x ) = 0 ∇f_0 (x) = 0 f0(x)=0
  • 等式约束问题: x x x 最小化 f 0 ( x ) f_0 (x) f0(x) 且满足 A x = b Ax = b Ax=b 当且仅当存在 v v v使得:
    A x = b , ∇ f 0 ( x ) + A T v = 0 Ax=b,\ ∇f_0 (x)+A^Tv=0 Ax=b, f0(x)+ATv=0
  • 非负正交坐标系上的的最小化问题: x x x 最小化 R + n R^n_+ R+n 上的 f 0 ( x ) f_0 (x) f0(x) 当且仅当:
    • x x x的所有分量非负: x ≥ 0 x\geq 0 x0
    • 对于所有的分量 i i i,如果 x i = 0 x_i=0 xi=0,则其对应的梯度分量 ∇ f 0 ( x ) i ∇f_0 (x)_i f0(x)i非负
    • 对于所有的分量 i i i,如果 x i > 0 x_i>0 xi>0,则其对应的梯度分量 ∇ f 0 ( x ) i ∇f_0 (x)_i f0(x)i等于0

(三)一些标准凸问题

1、线性规划 (LP)

线性规划(LP)是一种特殊形式的凸优化问题,其目标函数和约束函数都是仿射的,可行集是多面体(即由线性不等式和等式构成的凸多面体)。这使得线性规划问题具有一些特殊的性质和解决方法。

  • 目标函数:最小化 c T x + d c^Tx+d cTx+d
  • 约束条件: G x ≤ h Gx\leq h Gxh A x = b Ax=b Ax=b
    在这里插入图片描述

饮食问题:
在这里插入图片描述

分段线性最小化问题可以转化为线性规划(LP)问题
在这里插入图片描述>等价的线性规划问题即为:

  • 目标函数:最小化t
  • 约束条件: a i T x + b i ≤ t , i = 1 , . . . , m a^T_ix+b_i\leq t,i=1,...,m aiTx+bit,i=1,...,m x ∈ R n , t ∈ R x\in R^n,t\in R xRn,tR

这个线性规划问题的变量包括 x x x t t t,约束条件描述了函数 f 0 ( x ) f_0 (x) f0(x) 的上确界(epigraph)。通过将凸分段线性函数转化为等价的线性规划问题,我们可以使用线性规划算法来求解原始的凸分段线性函数最小化问题。

多面体的切比雪夫中心:
Chebyshev center x c h e b x_{cheb} xcheb是多面体 P P P 的中心,即它是一个点,使得对于多面体 P P P 中的每个点 x x x,从 x c h e b x_{ cheb} xcheb​到 x x x 的欧几里得距离小于或等于到 P P P 的边界的最大距离。这等价于说,Chebyshev center 是可以包容在 P P P 内的最大球的中心。中心 x c h e b x_{ cheb} xcheb和球的半径 r r r可以通过以下方式找到:

  • 对于每个约束 a i T x ≤ b i a_i^Tx\leq b_i aiTxbi,要求在球 B B B内部找到与约束最靠近的点,即对于每个 i i i,找到最大化 a i T ( x c h e b + u ) a_i^T(x_{cheb}+u) aiT(xcheb+u) u u u,其中 ∣ ∣ u ∣ ∣ 2 ≤ r ||u||_2\leq r ∣∣u2r,这相当于在球内找到一个与约束最接近的边界点
  • 找到这些最近的点的最小值,即最大化 r r r,同时满足所有约束。这等价于最大化球的半径,使得球包含在多面体P中。

用线性规划表示为:

  • 最大化 r r r
  • 约束条件: a i T x c h e b + r ∣ ∣ a i ∣ ∣ 2 ≤ b i , i = 1 , . . . , m a_i^Tx_{cheb}+r||a_i||_2\leq b_i,i=1,...,m aiTxcheb+r∣∣ai2bi,i=1,...,m
    在这里插入图片描述

2、二次规划 (QP)

二次规划(Quadratic Programming,简称QP)是一种优化问题,其目标是最小化或最大化一个二次型目标函数,其变量受到一组线性等式和不等式约束的限制。通常的形式如下:

  • 目标函数:最小化 ( 1 / 2 ) x T P x + q T x + r (1/2)x^TPx+q^Tx+r (1/2)xTPx+qTx+r
  • 约束条件: G x ≤ h Gx\leq h Gxh A x = b Ax=b Ax=b

其中, P P P是对称正定矩阵
在这里插入图片描述

最小二乘法:

  • 目标函数:最小化 ‖ A x − b ‖ 2 ‖Ax − b‖_2 Axb2
  • 解析解: x ∗ = A † b x^* = A†b x=Ab A † A† A 是伪逆)
  • 可以添加线性约束,例如:
    • x > 0 x> 0 x>0(非负最小二乘法)
    • x 1 ≤ x 2 ≤ . . . ≤ x n x_1\leq x_2\leq ... \leq x_n x1x2...xn(等渗回归)

具有随机成本的线性规划:

  • 目标函数:最小化 c ˉ T x + γ x T Σ x \bar{c}^Tx+\gamma x^T\Sigma x cˉTx+γxTΣx
  • 约束条件: G x ≤ h , A x = b Gx\leq h,Ax=b Gxh,Ax=b

其中, c c c是随机成本, γ > 0 \gamma > 0 γ>0 为风险厌恶参数,控制预期成本和方差(风险)之间的权衡

3、二次约束二次规划 (QCQP)

二次约束二次规划(Quadratically Constrained Quadratic Programming,QCQP)问题是在二次目标函数下,满足一组二次不等式约束条件。通常的形式如下:

  • 目标函数:最小化 ( 1 / 2 ) x T P 0 x + q 0 T x + r 0 (1/2)x^TP_0x+q_0^Tx+r_0 (1/2)xTP0x+q0Tx+r0
  • 约束条件: ( 1 / 2 ) x T P i x + q i T x + r i , i = 1 , . . . , m (1/2)x^TP_ix+q_i^Tx+r_i,i=1,...,m (1/2)xTPix+qiTx+ri,i=1,...,m A x = b Ax=b Ax=b

其中, P P P是对称正定矩阵,目标和约束是凸二次的;如果 P 1 , . . . , P m ∈ S n + + P_1,..., P_m ∈ S_n^++ P1,...,PmSn++,可行域是 m 个椭球与仿射集的交集。

4、二阶锥规划(SOCP)

Second-Order Cone Programming (SOCP)是一类凸优化问题,它涉及到二阶锥约束,通常具有以下形式:

  • 目标函数:最小化 f T x f^Tx fTx
  • 约束条件: ∣ ∣ A i x + b i ∣ ∣ 2 ≤ c i T x + d i , i = 1 , . . . , m ||A_ix+b_i||_2\leq c_i^Tx+d_i,i=1,...,m ∣∣Aix+bi2ciTx+di,i=1,...,m F x = g Fx=g Fx=g

其中,不等式约束又叫二阶锥约束(SOC): ( A i x + b i , c i T x + d i ) ∈ s e c o n d − o r d e r c o n e i n R n i + 1 (A_ix+b_i,c_i^Tx+d_i)\in second-order\ cone\ in\ R^{n_i+1} (Aix+bi,ciTx+di)secondorder cone in Rni+1。如果 n i = 0 n_i=0 ni=0,二阶锥规划就会退为线性规划,如果 c i = 0 c_i=0 ci=0,二阶锥规划退为二次约束二次规划 (QCQP)。

鲁棒线性规划问题: 假设约束向量 a i a_i ai是不确定的情况,也就是说鲁棒线性规划(Robust Linear Programming)涉及到在不确定条件下寻找最优解。

  • 目标函数:最小化 c T x c^Tx cTx
  • 约束条件: a i T x ≤ b i , i = 1 , . . . , m a_i^Tx\leq b_i,i=1,...,m aiTxbi,i=1,...,m

对于这种不确定性,常见的处理方式有确定性最坏情况方法和随机方法两种。

确定性最坏情况方法:约束必须适用于所有 a i ∈ E i a_i ∈ E_i aiEi(不确定性椭球)

  • 确定性最坏情况方法的基本形式:
    • 目标函数:最小化 c T x c^Tx cTx
    • 约束条件: a i T x ≤ b i f o r a l l a i ∈ E i , i = 1 , . . . , m a_i^Tx\leq b_i\ for\ all\ a_i\in E_i,i=1,...,m aiTxbi for all aiEi,i=1,...,m
  • 确定性最坏情况方法的原理:不确定性椭球形式为 E i = { a ˉ i + P i u ∣ ∣ ∣ u ∣ ∣ 2 ≤ 1 } E_i=\{\bar{a}_i+P_iu|\ ||u||_2\leq 1\} Ei={aˉi+Piu ∣∣u21},其中 a ˉ i ∈ R \bar{a}_i\in R aˉiR是中心, P i ∈ R n × n P_i\in R^{n\times n} PiRn×n是决定半轴的奇异值/奇异向量。最终可以等价于以下形式的二阶锥规划问题:
    • 目标函数:最小化 c T x c^Tx cTx
    • 约束条件: a ˉ i T x + ∣ ∣ P T i x ∣ ∣ 2 2 ≤ b i , i = 1 , . . . , m \bar{a}_i^Tx+||PT_ix||^2_2\leq b_i,i=1,...,m aˉiTx+∣∣PTix22bi,i=1,...,m

随机方法:把 a i a_i ai看成一个随机变量,约束必须以一定的概率 η \eta η成立

  • 随机方法的基本形式
    • 目标函数:最小化 c T x c^Tx cTx
    • 约束条件: p r o b ( a i T x ≤ b i ) ≥ η , i = 1 , . . . , m prob(a_i^Tx\leq b_i)\geq \eta,i=1,...,m prob(aiTxbi)η,i=1,...,m
  • 随机方法的基本原理:假设 a i ∼ N ( a ˉ i , Σ i ) a_i\sim N(\bar{a}_i,\Sigma_i) aiN(aˉi,Σi),所以 a i T x ∼ N ( a ˉ i T x , x T Σ i x ) a_i^Tx\sim N(\bar{a}_i^Tx,x^T\Sigma_ix) aiTxN(aˉiTx,xTΣix) p r o b ( a i T x ≤ b i ) = Φ ( b i − a ˉ i T x ∣ ∣ Σ i 1 / 2 x ∣ ∣ 2 ) prob(a_i^Tx\leq b_i)=\Phi(\frac{b_i-\bar{a}_i^Tx}{||\Sigma_i^{1/2}x||_2}) prob(aiTxbi)=Φ(∣∣Σi1/2x2biaˉiTx) p r o b ( a i T x ≤ b i ) ≥ η prob(a_i^Tx\leq b_i)\geq \eta prob(aiTxbi)η可以被表示 a ˉ i T x + Φ − 1 ( η ) ∣ ∣ Σ i 1 / 2 x ∣ ∣ 2 ≤ b i \bar{a}_i^Tx+\Phi^{-1}(\eta)||\Sigma_i^{1/2}x||_2\leq b_i aˉiTx+Φ1(η)∣∣Σi1/2x2bi。当 η > 1 / 2 \eta > 1/2 η>1/2时,可以等价于以下形式的二阶锥规划问题:
    • 目标函数:最小化 c T x c^Tx cTx
    • 约束条件: a ˉ i T x + Φ − 1 ( η ) ∣ ∣ Σ i 1 / 2 x ∣ ∣ 2 ≤ b i , i = 1 , . . . , m \bar{a}_i^Tx+\Phi^{-1}(\eta)||\Sigma^{1/2}_ix||_2\leq b_i,i=1,...,m aˉiTx+Φ1(η)∣∣Σi1/2x2bi,i=1,...,m

4、凸椎形式问题

在凸优化中,凸锥形式的问题是一种重要的形式,涉及到优化目标函数以及约束条件均为凸锥函数或凸锥集。具体而言,考虑以下凸锥形式的问题:

  • 目标函数: 最小化 最小化 最小化c^Tx$
  • 约束条件: F x + g ≤ K 0 Fx+g\leq_K 0 Fx+gK0 A x = b Ax=b Ax=b

其中, K K K表示一个凸椎,通常是一个封闭的凸椎

5、半定规划 (SDP)

半定规划(Semidefinite Programming,SDP)是一类重要的凸优化问题,它涉及到优化一个线性函数,其变量是对称半正定矩阵。半定规划的一般形式如下:

  • 目标函数:最小化 c T x c^Tx cTx
  • 约束条件: x 1 F 1 + x 2 F 2 + . . . + x n F n + G ≤ 0 x_1F_1+x_2F_2+...+x_nF_n+G\leq 0 x1F1+x2F2+...+xnFn+G0 A x = b Ax=b Ax=b

其中, F F F G G G为对称矩阵( F i , G ∈ S k F_i,G\in S^k Fi,GSk),不等式约束称为线性矩阵不等式(LMI)。

示例:矩阵范数最小化
在这里插入图片描述

6、LP、SOCP与SDP

LP 和等效的 SDP:
在这里插入图片描述SOCP 和等效的 SDP:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/700257.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【java-数据结构15-模拟实现栈的方法】

上篇文章中,我们已经手动实现了栈,下面,我们将继续手动实现栈的方法~ 1.在栈中存放元素 1.定义一个usedsize,用来临时存放下标 2.当存放一个元素后,下标加一 3.不要忘记判满 如图 代码如下 判满方法 public boolea…

BLDC电机基础知识

1、电机工作原理 电机输入的是电能输出机械能,即电机是一种将电能转换为机械能的装置。电机利用磁场的同名磁极互相排斥以及电磁场原理完成电能与机械能的转换。 由物理电磁场理论知识我们知道,磁铁周围存在磁场,同时运动的电荷或通电导线周…

【Cesium解读】Cesium中primitive/entity贴地

官方案例 Cesium Sandcastle Cesium Sandcastle scene.globe.depthTestAgainstTerrain true; True if primitives such as billboards, polylines, labels, etc. should be depth-tested against the terrain surface, or false if such primitives should always be draw…

C语言笔记15

指针2 1.数组名的理解 int arr[ 10 ] { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 }; int *p &arr[ 0 ];17391692786 arr是数组名&#xff0c;数组名是首元素地址&#xff0c;&arr[0]就是取出首元素的地址放在指针变量p中。 #include <stdio.h> int main()…

Oracle 临时表空间的管理

Oracle 临时表空间的管理 临时表空间的处理 1.创建一个新的temporary tablespace; create temporary tablespace tp tempfile ...... size 10m autoextend on; 2.改变数据库的默认临时表空间 alter database default temporary tablespace tp; 3。drop tablespace temp; …

Python数据分析常用模块的介绍与使用

Python数据分析模块 前言一、Numpy模块Numpy介绍Numpy的使用Numpy生成数组ndarrayarray生成数组arange生成数组random生成数组其他示例 关于randint示例1示例2 关于rand Numpy数组统计方法示例 二、Pandas模块pandas介绍Series示例 DataFrame示例 三、其他模块Matplotlib/Seabo…

【JAVA】数组的定义与使用

前一篇我们讲述了方法的使用和递归&#xff0c;这一讲 我们来叙述一下数组相关知识点。最近更新较快&#xff0c;大家紧跟步伐哦~~ 1. 数组的基本概念 1.1 为什么要使用数组 假设现在要存5个学生的javaSE考试成绩&#xff0c;并对其进行输出&#xff0c;按照之前掌握的知识点&…

uniapp的底部弹出层实现保姆式教程

实现照片&#xff1a; 此过程先进入uniapp官网&#xff0c;找到扩展组件 打开找到里面的uni-popup和uni-icons 点击进入&#xff0c;下载&安装 点击下载并导入HBuilderX 导入到你使用的目录&#xff0c;如test目录 同样将uni-icons点击下载并导入HBuilderX 点击合并 此时te…

运输层(计算机网络谢希仁第八版)——学习笔记五

课件&#xff1a;课程包列表 (51zhy.cn) 目录 运输层协议概述 用户报协议UDP 传输控制协议TCP概述 可靠传输的工作原理 TCP可靠传输的实现 TCP的流量控制 TCP的拥塞控制 TCP的运输连接管理 运输层协议概述 进程之间的通信 运输层的位置——只有位于网络边缘部分的主机的协议栈才…

Jmeter+Grafana+Prometheus搭建压测监控平台

本文不介绍压测的规范与技术指标&#xff0c;本文是演示针对Jmeter如何将压测过程中的数据指标&#xff0c;通过Prometheus采集存储&#xff0c;并在Granfan平台进行仪表盘展示; 介绍 系统压测属于日常项目开发中的一个测试环节&#xff0c;使用测试工具模拟真实用户行为&…

Day 46 139.单词拆分

单词拆分 给定一个非空字符串 s 和一个包含非空单词的列表 wordDict&#xff0c;判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。 说明&#xff1a; 拆分时可以重复使用字典中的单词。 你可以假设字典中没有重复的单词。 示例 1&#xff1a; 输入: s “leet…

小红书自动私信获客,打造个人品牌

在当今这个内容为王、社交至上的时代&#xff0c;小红书作为新兴的社交电商平台&#xff0c;凭借其独特的社区氛围和强大的种草能力&#xff0c;成为了众多KOL、商家以及个人品牌打造的首选平台。想要在小红书上脱颖而出&#xff0c;精准引流获客&#xff0c;利用自动私信功能不…