【机器学习】:基于决策树与随机森林对数据分类

机器学习实验报告:决策树与随机森林数据分类

实验背景与目的

在机器学习领域,决策树和随机森林是两种常用的分类算法。决策树以其直观的树形结构和易于理解的特点被广泛应用于分类问题。随机森林则是一种集成学习算法,通过构建多个决策树并进行投票,以提高分类的准确性和鲁棒性。本实验的目的在于让学生通过实践,深入理解这两种算法的工作原理,掌握使用Python的sklearn库对数据进行分类的方法,并熟悉数据预处理的相关技术。

数据集

关注公众号:码银学编程,回复:income_classification。

income_classification

实验环境配置

实验在配置较高的个人计算机上进行,具体配置如下:

  • 开发工具:PyCharm 2021.3.1
  • 操作系统:Windows 11
  • 处理器:Intel® Core™ i5-10210U CPU @ 1.60GHz 2.11 GHz
  • 内存:16.0 GB (15.8 GB 可用)
  • 系统类型:64 位操作系统,基于 x64 的处理器

实验内容与过程

实验内容主要围绕使用决策树和随机森林算法对收入水平数据集income_classification.csv进行分类。具体步骤如下:

实验步骤1:数据载入与展示

首先,实验从载入数据集开始。使用pandas库的read_csv函数读取数据集,并使用shape属性获取数据集的维度,即行数和列数,以及使用head()函数展示前5行数据。

实验步骤2:数据离散化处理

对于连续变量age,实验采用分位数的方法进行离散化处理。pd.qcut函数根据数据的分布将age分为5个区间,每个区间的数据被赋予一个从0开始的整数标签。

实验步骤3:特征编码

对于分类特征,实验使用LabelEncoder进行编码,将每个类别的字符串标签转换为整数。这一步骤是必要的,因为机器学习模型只能处理数值型数据。

实验步骤4:数据预处理及构造标签

接下来,实验对数据进行预处理,构造模型的输入数据和标签。数据集中的income字段被用作标签,根据其值将标签分为0和1两类。

实验步骤5:转换字符串数据类型为数值型

由于决策树和随机森林算法只能处理数值型数据,实验使用DictVectorizer将数据转换为数值型。

实验步骤6:训练集与测试集拆分

实验将数据集按照7:3的比例随机划分为训练集和测试集,以便于后续的训练和测试。

实验步骤7:CART决策树分类

使用CART算法训练决策树分类器,并计算其在测试集上的分类准确率。

实验步骤8:随机森林分类

使用随机森林算法训练分类器,并同样计算其在测试集上的分类准确率。

实验步骤9:结果可视化

最后,实验通过柱状图可视化了两种模型的分类准确率,直观展示了随机森林相对于决策树在本次实验中的优势。
结果图

实验结果

实验结果显示,CART决策树的分类准确率为82.61%,而随机森林的分类准确率达到了84.83%,后者在本次实验中表现更优。
在这里插入图片描述

结果分析

决策树的生成是基于递归分裂过程,每一次分裂都旨在最大化类别的同质性。然而,决策树容易过拟合,特别是当数据集未经过适当的离散化处理时。随机森林通过构建多个决策树并进行投票,有效地提高了分类的准确性和鲁棒性。在本次实验中,随机森林的准确率超过了决策树,这可能是因为随机森林在处理复杂的分类问题时,能够更好地泛化。

整体代码分析

以下是实验中使用的关键代码的详细分析:

# 导入所需库
import numpy as np
import pandas as pd
from sklearn import tree
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_extraction import DictVectorizer
from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt# 1. 载入数据
print('1、载入数据')
data = pd.read_csv("income_classification.csv", header=0)
print('数据维度:', data.shape)
print(data.head())# 2. 对连续变量 'age' 进行离散化处理
print('\n2、对年龄进行离散化处理')
data['age'] = pd.qcut(data['age'], q=5, labels=False)  # 使用分位数进行离散化
print(data.head())# 3. 将分类特征进行编码
print('\n3、对分类特征进行编码')
class_le = LabelEncoder()
categorical_features = ['workclass','marital-status','occupation','education','native-country','relationship','race','sex']
for feature in categorical_features:data[feature] = class_le.fit_transform(data[feature])
print(data.head())# 4. 数据预处理及构造标签
print('4、构造数据和标签')
data1 = data.drop('income', axis=1).to_dict(orient='records')
labels = np.where(data['income'] == '<=50K', 0, 1)# 5. 转换字符串数据类型为数值型
print('5、转换字符串数据类型')
vec = DictVectorizer()
x = vec.fit_transform(data1).toarray()# 6. 拆分训练集与测试集
print('6、拆分训练数据和测试数据')
ratio = 0.7
indices = np.random.permutation(len(x))
split_index = int(ratio * len(indices))
x_train, x_test = x[indices[:split_index]], x[indices[split_index:]]
y_train, y_test = labels[indices[:split_index]], labels[indices[split_index:]]# 7. CART决策树分类
print('7、CART决策树分类')
clf_cart = tree.DecisionTreeClassifier(criterion='entropy')
clf_cart.fit(x_train, y_train)
accuracy_cart = clf_cart.score(x_test, y_test)
print('CART树分类准确率:', accuracy_cart)# 8. 随机森林分类
print('8、随机森林分类')
clf_random = RandomForestClassifier()
clf_random.fit(x_train, y_train)
accuracy_random = clf_random.score(x_test, y_test)
print('随机森林分类准确率:', accuracy_random)# 可视化分类准确率
models = ['CART', 'Random Forest']
accuracies = [accuracy_cart, accuracy_random]plt.figure(figsize=(5, 5))
plt.bar(models, accuracies, color=['blue', 'green'])
plt.yticks(np.arange(0, 1, 0.05))
for i, v in enumerate(accuracies):plt.text(i, v + max(accuracies) * 0.05, str(v), ha='center', va='bottom')
plt.title('Model Accuracies')
plt.xlabel('Model')
plt.ylabel('Accuracy Score')
plt.show()

在上述代码中,首先导入了实验所需的库,然后按步骤执行了数据载入、离散化处理、特征编码、数据预处理、模型训练和分类准确率计算。最后,使用matplotlib库对分类准确率进行了可视化展示。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/704181.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SSM整合-前后端分离-实现增删改查 (下)

主流框架SSM 实现功能03-添加家居信息需求分析/图解思路分析代码实现注意事项和细节 实现功能04-显示家居信息需求分析/图解思路分析代码实现 实现功能05-修改家居信息需求分析/图解思路分析代码实现注意事项和细节 实现功能06-删除家居信息需求分析/图解思路分析代码实现课后作…

文心一言 VS 讯飞星火 VS chatgpt (252)-- 算法导论18.2 5题

五、因为叶结点无需指向孩子结点的指针&#xff0c;那么对同样大小的磁盘页面&#xff0c;可选用一个与内部结点不同的(更大的) t 值。请说明如何修改 B 树的创建和插人过程来处理这个变化。如果要写代码&#xff0c;请用go语言。 文心一言&#xff1a; 当我们在B树&#xff…

物联网设计竞赛_5_Jetson Nano连接摄像头解决运行卡顿问题

我在命令行用camorama命令打开摄像头的时候发现摄像头非常流畅 当我用python的cv2库打开摄像头的时候发现摄像头显示图片异常卡顿&#xff0c;在网上多方寻觅无果后&#xff0c;经过偶然尝试&#xff0c;我发现了卡顿原来是视频帧率问题 淘宝官方资料看我的摄像头只有30fps, …

84.网络游戏逆向分析与漏洞攻防-游戏技能系统分析-筛选与技能有关的数据包

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 如果看不懂、不知道现在做的什么&#xff0c;那就跟着做完看效果&#xff0c;代码看不懂是正常的&#xff0c;只要会抄就行&#xff0c;抄着抄着就能懂了 内容…

C++动态内存区域划分、new、delete关键字、泛型编程、函数模版、类模版

目录 一、C/C中程序的内存区域划分 为什么会存在内存区域划分&#xff1f; 二、new关键字 1、内置类型的new/delete使用方法&#xff1a; 2、new和delete的本质 3、常见面试题——malloc/free和new/delete的区别 三、模版 1、泛型编程 2、函数模版 &#xff08;1&…

XMind 头脑风暴/思维导图软件_V24.04.10291 PC高级版

一款风靡全球的头脑风暴和思维导图软件&#xff0c;为激发灵感和创意而生。在国内使用广泛&#xff0c;拥有强大的功能&#xff0c;包括思维管理&#xff0c;商务演示&#xff0c;与办公软件协同工作等功能。XMind中文版采用全球先进的Eclipse RCP软件架构&#xff0c;是集思维…

python:SunMoonTimeCalculator

# encoding: utf-8 # 版权所有 2024 ©涂聚文有限公司 # 许可信息查看&#xff1a; # 描述&#xff1a; https://github.com/Broham/suncalcPy # Author : geovindu,Geovin Du 涂聚文. # IDE : PyCharm 2023.1 python 3.11 # Datetime : 2024/5/14 21:59 # User …

百面算法工程师 | YOLOv6面试考点原理全解析

本文给大家带来的百面算法工程师是深度学习目标检测YOLOv6面试总结&#xff0c;文章内总结了常见的提问问题&#xff0c;旨在为广大学子模拟出更贴合实际的面试问答场景。在这篇文章中&#xff0c;我们还将介绍一些常见的深度学习目标检测面试问题&#xff0c;并提供参考的回答…

【练习】分治--快排思想

&#x1f3a5; 个人主页&#xff1a;Dikz12&#x1f525;个人专栏&#xff1a;算法(Java)&#x1f4d5;格言&#xff1a;吾愚多不敏&#xff0c;而愿加学欢迎大家&#x1f44d;点赞✍评论⭐收藏 目录 颜色分类 题目描述 题解 代码实现 排序数组 题目描述 题解 代码…

Shell之常用命令

目录 1.排序工具--sort命令 1.1 快读查找一个目录中最大文件 2.去重工具--uniq命令 2.1 分析判断远程登录错误次数&#xff0c;禁止该用户远程登录 3.修改工具--tr命令 4.列截取工具--cut命令 5.分割文件工具--split命令 6.合并文件列--paste命令 7.扫描工具--eval命令…

YOLOv8改进教程|加入可改变核卷积AKConv模块,效果远超DSConv!

⭐⭐ YOLOv8改进专栏|包含主干、模块、注意力机制、检测头等前沿创新 ​ ⭐⭐ 一、 论文介绍 论文链接&#xff1a;https://arxiv.org/abs/2311.11587 代码链接&#xff1a;GitHub - CV-ZhangXin/AKConv 论文速览&#xff1a;&#xff1a;AKConv是2023年11月发表的一种可变卷积…

mobarxtem应用与华为设备端口绑定技术

交换机端口绑定 华为交换机的基础配置与MOBAXTERM终端连接 实验步骤&#xff1a; 一、给每个交换机划分vlan并添加端口 1.单个vlan的划分 2.批量划分vlan 在高端交换机CE6800上批量划分连续编号的VLAN&#xff0c;本例中连续的vlan20到vlan25 [~CE6800]vlan b 20 to 25 3…