数据生成 | MATLAB实现WGAN生成对抗网络数据生成

数据生成 | MATLAB实现WGAN生成对抗网络数据生成

目录

    • 数据生成 | MATLAB实现WGAN生成对抗网络数据生成
      • 生成效果
      • 基本描述
      • 程序设计
      • 参考资料

生成效果

在这里插入图片描述

基本描述

1.WGAN生成对抗网络,数据生成,样本生成程序,MATLAB程序;
2.适用于MATLAB 2020版及以上版本;
3.基于Wasserstein生成对抗网络(Wasserstein Generative Adversarial Network,WGAN)的数据生成模型引入了梯度惩罚(Gradient Penalty)来改善训练的稳定性和生成样本的质量。WGAN旨在解决原始生成对抗网络(GAN)中的训练不稳定性和模式崩溃等问题。基于Wasserstein生成对抗网络梯度惩罚的数据生成模型在一些应用中表现出较好的性能和稳定性,帮助解决了传统GAN中的一些问题,如模式崩溃和训练不稳定等。它已经被广泛应用于图像生成、数据合成等领域。;
4.数据扩充:对于数据不足的情况,WGAN梯度惩罚可以用于合成新的数据样本,用于模型训练,如自然语言处理中的文本生成。。
5.数据增强:在训练深度学习模型时,可以使用WGAN梯度惩罚合成额外的训练样本,提高模型的鲁棒性和泛化能力。
6.使用便捷:
直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现WGAN生成对抗网络数据生成

tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图reluLayer("Name", "relu_1")                                          % Relu 激活层convolution2dLayer([3, 1], 32, "Name", "conv_2", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]32个特征图reluLayer("Name", "relu_2")];                                        % Relu 激活层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层flattenLayer("Name", "flatten")                                  % 网络铺平层lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in");            % 激活层输出 连接 反折叠层输入%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法'MaxEpochs', 500,...                 % 最大训练次数 1000'InitialLearnRate', best_lr,...          % 初始学习率为0.001'L2Regularization', best_l2,...         % L2正则化参数'LearnRateSchedule', 'piecewise',...  % 学习率下降'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400,...        % 经过800次训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',...          % 每次训练打乱数据集'ValidationPatience', Inf,...         % 关闭验证'Plots', 'training-progress',...      % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/71021.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

网络

mcq Java 传输层:拆分和组装,完成端到端的消息传递,流量控制,差错控制等 网络层: 寻址、路由,复用,拥塞控制,完成源到宿的传递。 显然A选项是错误的,有流量控制的是传输层…

爬虫逆向实战(三)--天某云登录

一、数据接口分析 主页地址:天某云 1、抓包 通过抓包可以发现登录接口是account/login 2、判断是否有加密参数 请求参数是否加密? 通过“载荷”模块可以发现password、comParam_signature、comParam_seqCode是加密的 请求头是否加密? 无…

数据结构—树表的查找

7.3树表的查找 ​ 当表插入、删除操作频繁时,为维护表的有序表,需要移动表中很多记录。 ​ 改用动态查找表——几种特殊的树 ​ 表结构在查找过程中动态生成 ​ 对于给定值key ​ 若表中存在,则成功返回; ​ 否则&#xff0…

vue中的路由缓存和解决方案

路由缓存的原因 解决方法 推荐方案二,使用钩子函数beforeRouteUpdate,每次路由更新前执行

Fortinet数据中心防火墙及服务ROI超300%,Forrester TEI研究发布

近日,专注网络与安全融合的全球网络安全领导者 Fortinet(NASDAQ:FTNT)联合全球知名分析机构Forrester发布总体经济影响独立分析报告,详细阐述了在企业数据中心部署 FortiGate 下一代防火墙(NGFW&#xff09…

Prometheus流程图(自绘)-核心组件-流程详解

阿丹手绘流程图:图片可能有点小查看的时候放大看看哈! prometheus核心组件 prometheus server Prometheus Server是Prometheus组件中的核心部分,负责实现对监控数据的获取,存储以及查询。Prometheus Server可以通过静态配置管理…

生物笔记——暑期学习笔记(四)

生物笔记——暑期学习笔记(四) 文章目录 前言一、R篇1. unname()2. duplicated()3. 数据提取4. 分组 二、生信篇1. 文本处理常用命令2. 命令输出1. 重定向2. 多命令执行 3. 文本工具4. 本地hmm鉴定1. hmmer软件安装2. 文件准备3. 基于hmm的鉴定 总结 前言…

c++--SLT六大组件之间的关系

1.SLT六大组件: 容器,迭代器,算法,仿函数,适配器,空间配置器 2.六大组件之间的关系 容器:容器是STL最基础的组件,没有容器,就没有数据,容器的作用就是用来存…

【计算机网络篇】UDP协议

✅作者简介:大家好,我是小杨 📃个人主页:「小杨」的csdn博客 🐳希望大家多多支持🥰一起进步呀! UDP协议 1,UDP 简介 UDP(User Datagram Protocol)是一种无连…

【目标检测系列】YOLOV2解读

为更好理解YOLOv2模型,请先移步,了解YOLOv1后才能更好的理解YOLOv2所做的改进。 前情回顾:【目标检测系列】YOLOV1解读_怀逸%的博客-CSDN博客 背景 通用的目标检测应该具备快速、准确且能过识别各种各样的目标的特点。自从引入神经网络以来&a…

一文了解汽车芯片的分类及用途介绍

汽车芯片按其功能可分为控制类(MCU和AI芯片)、功率类、传感器和其他(如存储器)四种类型。市场基本被国际巨头所垄断。人们常说的汽车芯片是指汽车里的计算芯片,按集成规模可分为MCU芯片和AI芯片(SoC芯片&am…

【第二讲---初识SLAM】

SLAM简介 视觉SLAM,主要指的是利用相机完成建图和定位问题。如果传感器是激光,那么就称为激光SLAM。 定位(明白自身状态(即位置))建图(了解外在环境)。 视觉SLAM中使用的相机与常见…