CNN卷积详解(三)

一、卷积层的计算

4 ∗ * 4的输入矩阵 I I I 和 3 ∗ * 3 的卷积核 K K K:

  • 在步长(stride)为 1 时,输出的大小为 ( 4 − 3 + 1 ) × ( 4 − 3 + 1)

计算公式:
● 输入图片矩阵 I I I 大小: w × w w × w w×w
● 卷积核 K K K k × k k × k k×k
● 步长 S S S s s s
● 填充大小(padding): p p p

o = ( w − k + 2 p ) s + 1 o = \frac{(w − k + 2p )}{s}+1 o=s(wk+2p)+1

输出图片大小为: o × o o × o o×o
● 步长为2,卷积核为33,p=0的卷积情况如下:
在这里插入图片描述
当卷积函数中padding='same’时,会动态调整 p p p 值,确保 o = w o = w o=w ,即保证输入与输出一致。例如:输入是 28
281 输出也为 28281 。
● 步长为1,卷积核为3
3,padding='same’的卷积情况如下:

在这里插入图片描述

🔍实例:
7 ∗ 7 7*7 77 的 input, 3 ∗ 3 3*3 33 的 kernel,无填充(padding=0),步长为1,则 o = ( 7 − 3 ) 1 + 1 o = \frac{(7 − 3 )}{1}+1 o=1(73)+1也即 output size 为 5 ∗ 5 5*5 55
在这里插入图片描述
7 ∗ 7 7*7 77 的 input, 3 ∗ 3 3*3 33 的 kernel,无填充(padding=0),步长为2,则 o = ( 7 − 3 ) 2 + 1 o = \frac{(7 − 3 )}{2}+1 o=2(73)+1也即 output size 为 3 ∗ 3 3*3 33
在这里插入图片描述

二、卷积层运算量的计算

在这里插入图片描述
对于第一个卷积过程涉及的计算量计算过程如下:

首先,我们需要计算卷积层的参数量。对于一个卷积核大小为 k × k k \times k k×k,输入特征图大小为 h × w × c i n h \times w \times c_{in} h×w×cin,输出特征图大小为 h ′ × w ′ × c o u t h' \times w' \times c_{out} h×w×cout的卷积层,其参数量为:

𝑃𝑎𝑟𝑎𝑚 = k 2 × c i n × c o u t k^2 \times c_{in} \times c_{out} k2×cin×cout + c o u t c_{out} cout

其中最后的 c o u t c_{out} cout是bias的数量

引自: [假设卷积核的大小为 k*k, 输入channel为M, 输出channel为N。]
(1)bias为True时:参数数量为: k × k × M × N + N k × k × M × N + N k×k×M×N+N (bias的数量与输出channel的数量是一样的)

(2)bias为False时:参数数量为: k × k × M × N k×k×M×N k×k×M×N

(3)当使用BN时,还有两个可学习的参数α和β,参数量均为N 则参数数量为: k × k × M × N + 3 × N k×k×M×N + 3×N k×k×M×N+3×N

对于本题,输入特征图大小为 100 × 100 × 128 100 \times 100 \times 128 100×100×128,输出特征图大小为 100 × 100 × 256 100 \times 100 \times 256 100×100×256,卷积核大小为 5 × 5 5 \times 5 5×5,且填充为 2,步长为 1,输出通道数为 256。因此,每个卷积层的参数量为:

𝑃𝑎𝑟𝑎𝑚 = 5 2 × 128 × 256 5^2 \times 128 \times 256 52×128×256 + 256 ≈ 8.192 × 1 0 5 8.192 \times 10^5 8.192×105

参数量会计算了,那么 F L O P s FLOPs FLOPs其实也是很简单的,就一个公式:

F L O P s t o t a l FLOPs_{total} FLOPstotal = 𝑃𝑎𝑟𝑎𝑚 × h ′ × w ′ \times h' \times w' ×h×w = 8.192 × 1 0 5 × 100 × 100 8.192 \times 10^5 \times 100 \times 100 8.192×105×100×100= 8.192 × 1 0 9 8.192 \times 10^9 8.192×109

因此,经过具有 256 个输出的 5x5 卷积层之后,输出数据为 100x100x256 的计算量是约为 8.192 × 1 0 9 F L O P s 8.192 \times 10^{9} FLOPs 8.192×109FLOPs

对于第二个卷积过程涉及的计算量计算过程如下:

首先考虑 1x1 卷积层的计算量。套用上面的公式,输入特征图大小为 100 × 100 × 128 100 \times 100 \times 128 100×100×128,输出通道数为 32,因此经过 1x1 卷积层后,输出特征图大小为 100 × 100 × 32 100 \times 100 \times 32 100×100×32,这里的bias值很小我直接省了,计算量为:

F L O P s 1 × 1 FLOPs_{1\times1} FLOPs1×1 = 1 2 × 128 × 32 × 100 × 100 = 4.096 × 1 0 7 1^2 \times 128 \times 32 \times 100 \times 100 = 4.096 \times 10^7 12×128×32×100×100=4.096×107

接下来考虑 5x5 卷积层的计算量,经过 1x1 卷积层后,输出特征图大小为 100 × 100 × 32 100 \times 100 \times 32 100×100×32,输入通道数为 32,输出通道数为 256,卷积核大小为 5x5,填充为 2,步长为 1,这里的bias值很小我直接省了,计算量为:

F L O P s 5 × 5 FLOPs_{5\times5} FLOPs5×5 = 5 2 × 32 × 256 × 100 × 100 = 2.048 × 1 0 9 5^2 \times 32 \times 256 \times 100 \times 100= 2.048 \times 10^{9} 52×32×256×100×100=2.048×109

因此,经过具有 32 个 1x1大小的卷积核的卷积层和具有 256 个5x5大小的卷积核的卷积层之后,输出数据为 100x100x256 的计算量为

F L O P s 1 × 1 + F L O P s 5 × 5 FLOPs_{1\times1} + FLOPs_{5\times5} FLOPs1×1+FLOPs5×5 2.048 × 1 0 9 2.048 \times 10^{9} 2.048×109

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/76231.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CSS自学框架之动画

这一节,自学CSS动画。主要学习了淡入淡出、淡入缩放、缩放、移动、旋转动画效果。先看一下成果。 优雅的过渡动画,为你的页面添加另一份趣味! 在你的选择器里插入 animation 属性,并添加框架内置的 keyframes 即可实现&#xff0…

在ubuntu+cpolar+rabbitMQ环境下,实现mq服务端远程访问

文章目录 前言1.安装erlang 语言2.安装rabbitMQ3. 内网穿透3.1 安装cpolar内网穿透(支持一键自动安装脚本)3.2 创建HTTP隧道 4. 公网远程连接5.固定公网TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网TCP端口地址 前言 RabbitMQ是一个在 AMQP(高级消息队列协议)基…

8.4.tensorRT高级(3)封装系列-infer推理封装,输入输出tensor的关联

目录 前言1. infer封装总结 前言 杜老师推出的 tensorRT从零起步高性能部署 课程,之前有看过一遍,但是没有做笔记,很多东西也忘了。这次重新撸一遍,顺便记记笔记。 本次课程学习 tensorRT 高级-infer推理封装,输入输出…

【LeetCode】剑指 Offer Ⅱ 第4章:链表(9道题) -- Java Version

题库链接:https://leetcode.cn/problem-list/e8X3pBZi/ 类型题目解决方案双指针剑指 Offer II 021. 删除链表的倒数第 N 个结点双指针 哨兵 ⭐剑指 Offer II 022. 链表中环的入口节点(环形链表)双指针:二次相遇 ⭐剑指 Offer I…

基于 Debian 12 的MX Linux 23 正式发布!

导读MX Linux 是基于 Debian 稳定分支的面向桌面的 Linux 发行,它是 antiX 及早先的 MEPIS Linux 社区合作的产物。它采用 Xfce 作为默认桌面环境,是一份中量级操作系统,并被设计为优雅而高效的桌面与如下特性的结合:配置简单、高…

基于YOLOv8模型和PCB电子线路板缺陷目标检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要:基于YOLOv8模型PCB电子线路板缺陷目标检测系统可用于日常生活中检测与定位PCB线路板瑕疵,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检…

调频连续波(FMCW)波形设计、真实道路场景仿真及汽车自适应巡航控制信号处理(Matlab代码实现)

目录 💥1 概述 📚2 运行结果 🎉3 参考文献 👨‍💻4 Matlab代码 💥1 概述 以下是关于调频连续波(FMCW)波形设计、真实道路场景仿真以及汽车自适应巡航控制信号处理的概述&#x…

1、攻防世界第一天

1、网站目录下会有一个robots.txt文件,规定爬虫可以/不可以爬取的网站。 2、URL编码细则:URL栏中字符若出现非ASCII字符,则对其进行URL编码,浏览器将该请求发给服务端;服务端会可能会先对收到的url进行解码&#xff0…

信号处理--基于EEG脑电信号的眼睛状态的分析

本实验为生物信息学专题设计小项目。项目目的是通过提供的14导联EEG 脑电信号,实现对于人体睁眼和闭眼两个状态的数据分类分析。每个脑电信号的时长大约为117秒。 目录 加载相关的库函数 读取脑电信号数据并查看数据的属性 绘制脑电多通道连接矩阵 绘制两类数据…

【大虾送书第六期】搞懂大模型的智能基因,RLHF系统设计关键问答

目录 ✨1、RLHF是什么? ✨2、RLHF适用于哪些任务? ✨3、RLHF和其他构建奖励模型的方法相比有何优劣? ✨4、什么样的人类反馈才是好的反馈 ✨5、RLHF算法有哪些类别,各有什么优缺点? ✨6、RLHF采用人类反馈会带来哪些局…

71 # 协商缓存的配置:通过内容

对比(协商)缓存 比较一下再去决定是用缓存还是重新获取数据,这样会减少网络请求,提高性能。 对比缓存的工作原理 客户端第一次请求服务器的时候,服务器会把数据进行缓存,同时会生成一个缓存标识符&#…

算法leetcode|72. 编辑距离(rust重拳出击)

文章目录 72. 编辑距离:样例 1:样例 2:提示: 分析:题解:rust:二维数组(易懂)滚动数组(更加优化的内存空间) go:c:python&a…