[转]高斯-牛顿算法

news/2025/1/21 18:37:41/文章来源:https://www.cnblogs.com/rainbow70626/p/18391207

Gauss-Newton算法是解决非线性最优问题的常见算法之一,最近研读开源项目代码,又碰到了,索性深入看下。本次讲解内容如下:

 

  • 基本数学名词识记
  • 牛顿法推导、算法步骤、计算实例
  • 高斯牛顿法推导(如何从牛顿法派生)、算法步骤、编程实例
  • 高斯牛顿法优劣总结

 

 

一、基本概念定义

1.非线性方程定义及最优化方法简述

   指因变量与自变量之间的关系不是线性的关系,比如平方关系、对数关系、指数关系、三角函数关系等等。对于此类方程,求解n元实函数f在整个n维向量空间Rn上的最优值点往往很难得到精确解,经常需要求近似解问题。

   求解该最优化问题的方法大多是逐次一维搜索的迭代算法,基本思想是在一个近似点处选定一个有利于搜索方向,沿这个方向进行一维搜索,得到新的近似点。如此反复迭代,知道满足预定的精度要求为止。根据搜索方向的取法不同,这类迭代算法可分为两类:

解析法:需要用目标函数的到函数,

梯度法:又称最速下降法,是早期的解析法,收敛速度较慢

牛顿法:收敛速度快,但不稳定,计算也较困难。高斯牛顿法基于其改进,但目标作用不同

共轭梯度法:收敛较快,效果好

变尺度法:效率较高,常用DFP法(Davidon Fletcher Powell)

 

直接法:不涉及导数,只用到函数值。有交替方向法(又称坐标轮换法)、模式搜索法、旋转方向法、鲍威尔共轭方向法和单纯形加速法等。

 

 

2.非线性最小二乘问题

   非线性最小二乘问题来自于非线性回归,即通过观察自变量和因变量数据,求非线性目标函数的系数参数,使得函数模型与观测量尽量相似。

   高斯牛顿法解决非线性最小二乘问题的最基本方法,并且它只能处理二次函数。(使用时必须将目标函数转化为二次的)

   Unlike Newton'smethod, the Gauss–Newton algorithm can only be used to minimize a sum ofsquared function values

 

 

 

3.基本数学表达

a.梯度gradient,由多元函数的各个偏导数组成的向量

以二元函数为例,其梯度为:

 

b.黑森矩阵Hessian matrix,由多元函数的二阶偏导数组成的方阵,描述函数的局部曲率,以二元函数为例,

 

c.雅可比矩阵 Jacobian matrix,是多元函数一阶偏导数以一定方式排列成的矩阵,体现了一个可微方程与给出点的最优线性逼近。以二元函数为例,

如果扩展多维的话F: Rn-> Rm,则雅可比矩阵是一个m行n列的矩阵:

 

雅可比矩阵作用,如果P是Rn中的一点,F在P点可微分,那么在这一点的导数由JF(P)给出,在此情况下,由F(P)描述的线性算子即接近点P的F的最优线性逼近:

 

d.残差 residual,表示实际观测值与估计值(拟合值)之间的差

 

 

二、牛顿法

牛顿法的基本思想是采用多项式函数来逼近给定的函数值,然后求出极小点的估计值,重复操作,直到达到一定精度为止。

1.考虑如下一维无约束的极小化问题:

 

因此,一维牛顿法的计算步骤如下:

 

 

需要注意的是,牛顿法在求极值的时候,如果初始点选取不好,则可能不收敛于极小点

 

 

2.下面给出多维无约束极值的情形:

若非线性目标函数f(x)具有二阶连续偏导,在x(k)为其极小点的某一近似,在这一点取f(x)的二阶泰勒展开,即:

 

  如果f(x)是二次函数,则其黑森矩阵H为常数,式(1)是精确的(等于号),在这种情况下,从任意一点处罚,用式(2)只要一步可求出f(x)的极小点(假设黑森矩阵正定,所有特征值大于0)

  如果f(x)不是二次函数,式(1)仅是一个近似表达式,此时,按式(2)求得的极小点,只是f(x)的近似极小点。在这种情况下,常按照下面选取搜索方向:

牛顿法收敛的速度很快,当f(x)的二阶导数及其黑森矩阵的逆矩阵便于计算时,这一方法非常有效。【但通常黑森矩阵很不好求】

 

3.下面给出一个实际计算例子。

 

例:试用牛顿法求的极小值

 

解:

 

【f(x)是二次函数,H矩阵为常数,只要任意点出发,只要一步即可求出极小点】

 

三、牛顿高斯法

 

1.      gauss-newton是如何由上述派生的

有时候为了拟合数据,比如根据重投影误差求相机位姿(R,T为方程系数),常常将求解模型转化为非线性最小二乘问题。高斯牛顿法正是用于解决非线性最小二乘问题,达到数据拟合、参数估计和函数估计的目的。

假设我们研究如下形式的非线性最小二乘问题:

 

这两个位置间残差(重投影误差):

 

如果有大量观测点(多维),我们可以通过选择合理的T使得残差的平方和最小求得两个相机之间的位姿。机器视觉这块暂时不扩展,接着说怎么求非线性最小二乘问题。

若用牛顿法求式3,则牛顿迭代公式为:

 

看到这里大家都明白高斯牛顿和牛顿法的差异了吧,就在这迭代项上。经典高斯牛顿算法迭代步长λ为1.

那回过头来,高斯牛顿法里为啥要舍弃黑森矩阵的二阶偏导数呢?主要问题是因为牛顿法中Hessian矩阵中的二阶信息项通常难以计算或者花费的工作量很大,而利用整个H的割线近似也不可取,因为在计算梯度时已经得到J(x),这样H中的一阶信息项JTJ几乎是现成的。鉴于此,为了简化计算,获得有效算法,我们可用一阶导数信息逼近二阶信息项。注意这么干的前提是,残差r接近于零或者接近线性函数从而接近与零时,二阶信息项才可以忽略。通常称为“小残量问题”,否则高斯牛顿法不收敛。


 

3.  举例

接下来的代码里并没有保证算法收敛的机制,在例子2的自嗨中可以看到劣势。关于自变量维数,代码可以支持多元,但两个例子都是一维的,比如例子1中只有年份t,其实可以增加其他因素的,不必在意。

 

例子1,根据美国1815年至1885年数据,估计人口模型中的参数A和B。如下表所示,已知年份和人口总量,及人口模型方程,求方程中的参数。

// A simple demo of Gauss-Newton algorithm on a user defined function
 
#include <cstdio>
#include <vector>
#include <opencv2/core/core.hpp>using namespace std;
using namespace cv;const double DERIV_STEP = 1e-5;
const int MAX_ITER = 100;void GaussNewton(double(*Func)(const Mat &input, const Mat ¶ms), // function pointerconst Mat &inputs, const Mat &outputs, Mat ¶ms);double Deriv(double(*Func)(const Mat &input, const Mat ¶ms), // function pointerconst Mat &input, const Mat ¶ms, int n);// The user defines their function here
double Func(const Mat &input, const Mat ¶ms);int main()
{// For this demo we're going to try and fit to the function// F = A*exp(t*B)// There are 2 parameters: A Bint num_params = 2;// Generate random data using these parametersint total_data = 8;Mat inputs(total_data, 1, CV_64F);Mat outputs(total_data, 1, CV_64F);//load observation datafor(int i=0; i < total_data; i++) {inputs.at<double>(i,0) = i+1;  //load year
    }//load America populationoutputs.at<double>(0,0)= 8.3;outputs.at<double>(1,0)= 11.0;outputs.at<double>(2,0)= 14.7;outputs.at<double>(3,0)= 19.7;outputs.at<double>(4,0)= 26.7;outputs.at<double>(5,0)= 35.2;outputs.at<double>(6,0)= 44.4;outputs.at<double>(7,0)= 55.9;// Guess the parameters, it should be close to the true value, else it can fail for very sensitive functions!Mat params(num_params, 1, CV_64F);//init guessparams.at<double>(0,0) = 6;params.at<double>(1,0) = 0.3;GaussNewton(Func, inputs, outputs, params);printf("Parameters from GaussNewton: %f %f\n", params.at<double>(0,0), params.at<double>(1,0));return 0;
}double Func(const Mat &input, const Mat ¶ms)
{// Assumes input is a single row matrix// Assumes params is a column matrixdouble A = params.at<double>(0,0);double B = params.at<double>(1,0);double x = input.at<double>(0,0);return A*exp(x*B);
}//calc the n-th params' partial derivation , the params are our  final target
double Deriv(double(*Func)(const Mat &input, const Mat ¶ms), const Mat &input, const Mat ¶ms, int n)
{// Assumes input is a single row matrix// Returns the derivative of the nth parameterMat params1 = params.clone();Mat params2 = params.clone();// Use central difference  to get derivativeparams1.at<double>(n,0) -= DERIV_STEP;params2.at<double>(n,0) += DERIV_STEP;double p1 = Func(input, params1);double p2 = Func(input, params2);double d = (p2 - p1) / (2*DERIV_STEP);return d;
}void GaussNewton(double(*Func)(const Mat &input, const Mat ¶ms),const Mat &inputs, const Mat &outputs, Mat ¶ms)
{int m = inputs.rows;int n = inputs.cols;int num_params = params.rows;Mat r(m, 1, CV_64F); // residual matrixMat Jf(m, num_params, CV_64F); // Jacobian of Func()Mat input(1, n, CV_64F); // single row inputdouble last_mse = 0;for(int i=0; i < MAX_ITER; i++) {double mse = 0;for(int j=0; j < m; j++) {for(int k=0; k < n; k++) {//copy Independent variable vector, the yearinput.at<double>(0,k) = inputs.at<double>(j,k);}r.at<double>(j,0) = outputs.at<double>(j,0) - Func(input, params);//diff between estimate and observation population
 mse += r.at<double>(j,0)*r.at<double>(j,0);for(int k=0; k < num_params; k++) {Jf.at<double>(j,k) = Deriv(Func, input, params, k);}}mse /= m;// The difference in mse is very small, so quitif(fabs(mse - last_mse) < 1e-8) {break;}Mat delta = ((Jf.t()*Jf)).inv() * Jf.t()*r;params += delta;//printf("%d: mse=%f\n", i, mse);printf("%d %f\n", i, mse);last_mse = mse;}
}

运行结果:

 

 

A=7.0,B=0.26  (初始值,A=6,B=0.3),100次迭代到第4次就收敛了。

若初始值A=1,B=1,则要迭代14次收敛。

下图为根据上面得到的A、B系数,利用matlab拟合的人口模型曲线

 

例子2:我想要拟合如下模型,

由于缺乏观测量,就自导自演,假设4个参数已知A=5,B=1,C=10,D=2,构造100个随机数作为x的观测值,计算相应的函数观测值。然后,利用这些观测值,反推4个参数。

// A simple demo of Gauss-Newton algorithm on a user defined function
 
#include <cstdio>
#include <vector>
#include <opencv2/core/core.hpp>using namespace std;
using namespace cv;const double DERIV_STEP = 1e-5;
const int MAX_ITER = 100;void GaussNewton(double(*Func)(const Mat &input, const Mat ¶ms), // function pointerconst Mat &inputs, const Mat &outputs, Mat ¶ms);double Deriv(double(*Func)(const Mat &input, const Mat ¶ms), // function pointerconst Mat &input, const Mat ¶ms, int n);// The user defines their function here
double Func(const Mat &input, const Mat ¶ms);int main()
{// For this demo we're going to try and fit to the function// F = A*sin(Bx) + C*cos(Dx)// There are 4 parameters: A, B, C, Dint num_params = 4;// Generate random data using these parametersint total_data = 100;double A = 5;double B = 1;double C = 10;double D = 2;Mat inputs(total_data, 1, CV_64F);Mat outputs(total_data, 1, CV_64F);for(int i=0; i < total_data; i++) {double x = -10.0 + 20.0* rand() / (1.0 + RAND_MAX); // random between [-10 and 10]double y = A*sin(B*x) + C*cos(D*x);// Add some noise// y += -1.0 + 2.0*rand() / (1.0 + RAND_MAX);
 inputs.at<double>(i,0) = x;outputs.at<double>(i,0) = y;}// Guess the parameters, it should be close to the true value, else it can fail for very sensitive functions!Mat params(num_params, 1, CV_64F);params.at<double>(0,0) = 1;params.at<double>(1,0) = 1;params.at<double>(2,0) = 8; // changing to 1 will cause it not to find the solution, too far awayparams.at<double>(3,0) = 1;GaussNewton(Func, inputs, outputs, params);printf("True parameters: %f %f %f %f\n", A, B, C, D);printf("Parameters from GaussNewton: %f %f %f %f\n", params.at<double>(0,0), params.at<double>(1,0),params.at<double>(2,0), params.at<double>(3,0));return 0;
}double Func(const Mat &input, const Mat ¶ms)
{// Assumes input is a single row matrix// Assumes params is a column matrixdouble A = params.at<double>(0,0);double B = params.at<double>(1,0);double C = params.at<double>(2,0);double D = params.at<double>(3,0);double x = input.at<double>(0,0);return A*sin(B*x) + C*cos(D*x);
}double Deriv(double(*Func)(const Mat &input, const Mat ¶ms), const Mat &input, const Mat ¶ms, int n)
{// Assumes input is a single row matrix// Returns the derivative of the nth parameterMat params1 = params.clone();Mat params2 = params.clone();// Use central difference  to get derivativeparams1.at<double>(n,0) -= DERIV_STEP;params2.at<double>(n,0) += DERIV_STEP;double p1 = Func(input, params1);double p2 = Func(input, params2);double d = (p2 - p1) / (2*DERIV_STEP);return d;
}void GaussNewton(double(*Func)(const Mat &input, const Mat ¶ms),const Mat &inputs, const Mat &outputs, Mat ¶ms)
{int m = inputs.rows;int n = inputs.cols;int num_params = params.rows;Mat r(m, 1, CV_64F); // residual matrixMat Jf(m, num_params, CV_64F); // Jacobian of Func()Mat input(1, n, CV_64F); // single row inputdouble last_mse = 0;for(int i=0; i < MAX_ITER; i++) {double mse = 0;for(int j=0; j < m; j++) {for(int k=0; k < n; k++) {input.at<double>(0,k) = inputs.at<double>(j,k);}r.at<double>(j,0) = outputs.at<double>(j,0) - Func(input, params);mse += r.at<double>(j,0)*r.at<double>(j,0);for(int k=0; k < num_params; k++) {Jf.at<double>(j,k) = Deriv(Func, input, params, k);}}mse /= m;// The difference in mse is very small, so quitif(fabs(mse - last_mse) < 1e-8) {break;}Mat delta = ((Jf.t()*Jf)).inv() * Jf.t()*r;params += delta;//printf("%d: mse=%f\n", i, mse);printf("%f\n",mse);last_mse = mse;}
}

运行结果,得到的参数并不够理想,50次后收敛了

 

下图中,每次迭代残差并没有持续减少,有反复

4.优缺点分析

优点:

对于零残量问题,即r=0,有局部二阶收敛速度

对于小残量问题,即r较小或接近线性,有快的局部收敛速度

对于线性最小二乘问题,一步达到极小点

 

缺点:

对于不是很严重的大残量问题,有较慢的局部收敛速度

对于残量很大的问题或r的非线性程度很大的问题,不收敛

不一定总体收敛

如果J不满秩,则方法无定义。

对于它的缺点,我们通过增加线性搜索策略,保证目标函数每一步下降,对于几乎所有非线性最小二乘问题,它都具有局部收敛性及总体收敛,即所谓的阻尼高斯牛顿法。

其中,ak为一维搜索因子。

原文链接:https://www.cnblogs.com/wlzy/p/8012562.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/790503.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

USB TCPM

USB TCPM(Type-C Port Manager)的主要作用是管理 USB Type-C 端口的连接和电源传输协议(USB Power Delivery, PD),确保设备正确识别、协商和切换数据传输和电源供应的角色。TCPM 在 USB Type-C 连接中起到关键管理作用,主要职责包括:管理 USB Type-C 插拔检测:检测设备…

ZBook14灵耀

[cpu]13900H:3000 [LPDDR5 4800]4*8G:550 [IPS 140GF-2L01-14 ] :300 [WD]SN560 1T:400 [板3402]:900

[转]OpenCV4.8 GPU版本CMake编译详细步骤 与CUDA代码演示

导 读 本文将详细介绍如何使用CMake编译OpenCV4.8 CUDA版本并给出Demo演示,方便大家学习使用。 CMake编译详细步骤废话不多说,直接进入正题!【1】我使用的工具版本VS2017 + CMake3.18.2 + OpenCV4.8.0 + CUDA11.2一般情况下VS版本≥VS2017均可,CMake版本≥3.18.2,OpenC…

[图文直播]搭建Zfile私有网盘

特别提醒 部署好后,发现还需要借助外部存储源,而且暂时还没有增加对FTP的支持,那就意味着即便我搭建私有FTP,也暂时无法实现真正的私有网盘。暂时不符合我的要求,仅记录。 前言 以下是ZFile的官网,上面也涉及到了搭建方法 https://docs.zfile.vip/install/os-windows 此次…

gcc/g++编译

gcc编译编译工具链我们写程序的时候用的都是集成开发环境 (IDE: Integrated Development Environment),集成开发环境可以极大地方便我们程序员编写程序,但是配置起来也相对麻烦。在 Linux 环境下,我们用的是编译工具链,又叫软件开发工具包(SDK:Software Development Kit)。…

islide使用教程

1. 主题下载,点击“主题库”,可选择各种主题版本PPT模板下载 以上仅供参考,如有疑问,留言联系

对偶单纯形法算法精要

单纯形法是线性规划中最经典且广泛应用的求解方法,通过在可行解的边界上移动,逐步逼近最优解。它从一个初始基本可行解开始,不断优化目标函数值,直到找到最优解。对偶单纯形法则是单纯形法的一种变形,尤其适用于特定类型的线性规划问题。不同于标准的单纯形法,对偶单纯形…

ppt或wps安装islide

windows安装包下载: 官网:https://www.islide.cc/2. 一路下一步,可选择自定义安装路径,安装后点击体验,打开这个文件 3.能看到里面自动多了islide插件,内容可使用 以上仅供参考,如有疑问,留言联系

一键下载微博美图,‌这款浏览器插件让你轻松拥有!‌

偶尔在逛微博的时候,会遇到一些不错的照片,会想要保存下。但逐个保存太麻烦了,因此在 Chrome 插件商店搜了下,还真有一个能一键下载的插件,来分享一波。300.一键下载微博图片和视频 偶尔在逛微博的时候,会遇到一些不错的照片,会想要保存下。但逐个保存太麻烦了,因此在 …

使用 nuxi clean 命令清理 Nuxt 项目

title: 使用 nuxi clean 命令清理 Nuxt 项目 date: 2024/9/1 updated: 2024/9/1 author: cmdragon excerpt: nuxi clean 命令是管理和维护 Nuxt 项目的重要工具,它帮助你快速清理生成的文件和缓存,确保开发环境的干净。通过定期使用这个命令,你可以避免由于缓存或生成文件…

Dify大语言模型应用开发平台新手必备:安装注册与私有服务器部署全步骤

Dify简介 Dify是一个开源的大语言模型(Large Language Model, LLM)应用开发平台。它融合了后端即服务(Backend as a Service, BaaS)和LLMOps的理念,旨在帮助开发者,甚至是非技术人员,能够快速搭建和部署生成式AI应用程序。 Dify的主要特点包括:简化开发流程:通过提供一…

信息学奥赛初赛天天练-81-NOIP2015普及组-完善程序-二分答案、二分查找、中位数、二分边界、二分时间复杂度

1 完善程序 (单选题 ,每小题3分,共30分) 中位数 median 给定 n(n为奇数且小于 1000)个整数,整数的范围在 0∼m(0<m<2^31) 之间,请使用二分法求这 n个整数的中位数。所谓中位数,是指将这 n个数排序之后,排在正中间的数。(第五空 2 分,其余 3 分) 01 #include <…