线段树分治

news/2025/1/24 17:51:49/文章来源:https://www.cnblogs.com/libohan/p/18402667

适用

某一个条件在查询的一段区间中存在的问题

如:有 \(t\) 个询问,每个询问输入一条边 \(u, v\), 如果当前图中没有这条边,那么插入这条边;反之删除这条边

思路

假设有 \(q\) 组询问,并且 \(q = 8\),我们就对 \(q\) 组询问建一棵线段树,如下图:
image
假设现在第一个条件出现在了 \(3\)\(7\) 这个区间内,那么图将变成这样:
image
假设现在第二个条件出现在了 \(1\)\(6\)这个区间内,那么图将变成这样:
image
由于每个询问最多会打 \(log(q)\) 个标记,所以时间复杂度为 \(q \times log(q)\)

Connect and Disconnect

看到题面,我们肯定会想到用并查集维护,可是普通的并查集并不支持删除操作,可是支持撤销操作,所以我们要使用线段树分治
code:

#include <bits/stdc++.h>using namespace std;const int N = 3e5 + 5;int n, k, u[N], v[N], len[N], ans, sz[N], fa[N];bool vis[N];char op[N];map<pair<int, int>, int > mp;vector<int> tr[N * 4];vector<pair<int, int> > stk;int find(int x) {if (fa[x] == x) {return x;}return find(fa[x]);
}bool merge(int x, int y) {x = find(x), y = find(y);if (x == y) {return 0;}if (sz[x] > sz[y]) {swap(x, y);}fa[x] = y;sz[y] += sz[x];stk.push_back({x, y});//记录合并了哪些return true;
}void cancel() {//撤销auto [x, y] = stk.back();stk.pop_back();sz[y] -= sz[x];fa[x] = x;
}void modify(int i, int l, int r, int x, int y, int p) {if (l > y || r < x) {return ;}if (l >= x && r <= y) {tr[i].push_back(p);return ;}int mid = (l + r) >> 1;modify(i * 2, l, mid, x, y, p);modify(i * 2 + 1, mid + 1, r, x, y, p);
}void query(int i, int l, int r) {int tot = 0;for (auto cur : tr[i]) {tot += merge(u[cur], v[cur]);}ans -= tot;if (l == r) {if (vis[l]) {cout << ans << "\n";}}else {int mid = (l + r) >> 1;query(i * 2, l, mid);query(i * 2 + 1, mid + 1, r);}ans += tot;while (tot--) {cancel();}
}int main() {ios::sync_with_stdio(0);cin.tie(0);freopen("connect.in", "r", stdin);freopen("connect.out", "w", stdout);cin >> n >> k;if (k == 0) {return 0;}for (int i = 1; i <= k; i++) {cin >> op[i];if (op[i] == '-') {cin >> u[i] >> v[i];if (u[i] > v[i]) {swap(u[i], v[i]);}len[mp[{u[i], v[i]}]] = i - mp[{u[i], v[i]}] + 1;}else if (op[i] == '+') {cin >> u[i] >> v[i];if (u[i] > v[i]) {swap(u[i], v[i]);}mp[{u[i], v[i]}] = i;}else vis[i] = true;}for (int i = 1; i <= k; i++) {if (u[i] && v[i] && !len[i] && op[i] == '+') {len[i] = k - i + 1;}//求出区间}for (int i = 1; i <= k; i++) {if (!len[i]) {continue;}modify(1, 1, k, i, i + len[i] - 1, i);}for (int i = 1; i <= n; i++) {fa[i] = i;sz[i] = 1;}ans = n;query(1, 1, k);return 0;
}

Disconnected Graph

由于不能直接从图中删去边,所以还是要用线段树分治
code:

#include <bits/stdc++.h>using namespace std;const int N = 1e6 + 2e5 + 5;int n, m, k, u[N], v[N], ans, sz[N], fa[N];vector<int> tr[N * 4], tmp[N];vector<pair<int, int> > stk;int find(int x) {if (fa[x] == x) {return x;}return find(fa[x]);
}bool merge(int x, int y) {x = find(x), y = find(y);if (x == y) {return 0;}if (sz[x] > sz[y]) {swap(x, y);}fa[x] = y;sz[y] += sz[x];stk.push_back({x, y});return true;
}void cancel() {auto [x, y] = stk.back();stk.pop_back();sz[y] -= sz[x];fa[x] = x;
}void modify(int i, int l, int r, int x, int y, int p) {if (l > y || r < x) {return ;}if (l >= x && r <= y) {tr[i].push_back(p);return ;}int mid = (l + r) >> 1;modify(i * 2, l, mid, x, y, p);modify(i * 2 + 1, mid + 1, r, x, y, p);
}void query(int i, int l, int r) {int tot = 0;for (auto cur : tr[i]) {tot += merge(u[cur], v[cur]);}ans -= tot;if (l == r) {if (ans == 1) {cout << "Connected\n";}else cout << "Disconnected\n";}else {int mid = (l + r) >> 1;query(i * 2, l, mid);query(i * 2 + 1, mid + 1, r);}ans += tot;while (tot--) {cancel();}
}int main() {ios::sync_with_stdio(0);cin.tie(0);freopen("disconnected.in", "r", stdin);freopen("disconnected.out", "w", stdout);cin >> n >> m;for (int i = 1; i <= n; i++) {fa[i] = i;sz[i] = 1;}ans = n;for (int i = 1; i <= m; i++) {cin >> u[i] >> v[i];}cin >> k;for (int i = 1, cnt, a; i <= k; i++) {cin >> cnt;for (int j = 1; j <= cnt; j++) {cin >> a;tmp[a].push_back(i);}}for (int i = 1; i <= m; i++) {if (!tmp[i].size()) {modify(1, 1, k, 1, k, i);continue;}if (tmp[i][0] != 1) {modify(1, 1, k, 1, tmp[i][0] - 1, i);}for (int j = 1; j < tmp[i].size(); j++) {if (tmp[i][j - 1] + 1 != tmp[i][j]) {modify(1, 1, k, tmp[i][j - 1] + 1, tmp[i][j] - 1, i);}}if (tmp[i][tmp[i].size() - 1] != k) {modify(1, 1, k, tmp[i][tmp[i].size() - 1] + 1, k, i);}}query(1, 1, k);return 0;
}

二分图 /【模板】线段树分治

都不用分析就能看出来是线段树分治,只不过要维护是否为二分图

如何维护是否为二分图呢?

分为两个集合,编号 \(1\)\(n\) 表示为二分图的左边,编号 \(n + 1\)\(2 \times n\) 表示为二分图的右边 (左右不重要),那么对于一条边 \(u, v\), 我们就要将 \(u\)\(v + n\) 建边,将 \(u + n\)\(v\) 建边,如果有一个点 \(x\) 使得 \(x\)\(x + n\) 在同一个集合里,自然就不是二分图
code:

#include <bits/stdc++.h>using namespace std;const int N = 5e5 + 5;int n, m, k, u[N], v[N], ans, sz[N], fa[N];//ans记录有几个不符合要求的bool vis[N];vector<int> tr[N * 2], tmp[N];vector<pair<int, int> > stk;int find(int x) {if (fa[x] == x) {return x;}return find(fa[x]);
}bool merge(int x, int y) {x = find(x), y = find(y);if (x == y) {return 0;}if (sz[x] > sz[y]) {swap(x, y);}fa[x] = y;sz[y] += sz[x];stk.push_back({x, y});if (!vis[x] && find(x + n) == find(x)) {ans++;vis[x] = true;}if (!vis[y] && find(y + n) == find(y)) {ans++;vis[y] = true;}return true;
}void cancel() {auto [x, y] = stk.back();stk.pop_back();sz[y] -= sz[x];fa[x] = x;if (vis[x] && find(x + n) != find(x)) {ans--;vis[x] = false;}if (vis[y] && find(y + n) != find(y)) {ans--;vis[y] = false;}
}void modify(int i, int l, int r, int x, int y, int p) {if (l > y || r < x) {return ;}if (l >= x && r <= y) {tr[i].push_back(p);return ;}int mid = (l + r) >> 1;modify(i * 2, l, mid, x, y, p);modify(i * 2 + 1, mid + 1, r, x, y, p);
}void query(int i, int l, int r) {int tot = 0;for (auto cur : tr[i]) {tot += merge(u[cur] + n, v[cur]);tot += merge(u[cur], v[cur] + n);}if (l == r) {if (l != k) {if (ans == 0) {cout << "Yes\n";}else cout << "No\n";}}else {int mid = (l + r) >> 1;query(i * 2, l, mid);query(i * 2 + 1, mid + 1, r);}while (tot--) {cancel();}
}int main() {ios::sync_with_stdio(0);cin.tie(0);cin >> n >> m >> k;k++;for (int i = 1; i <= 2 * n; i++) {fa[i] = i;sz[i] = 1;}for (int i = 1, l, r; i <= m; i++) {cin >> u[i] >> v[i] >> l >> r;if (l == r) {continue;}l++;modify(1, 1, k, l, r, i);}query(1, 1, k);return 0;
}

大融合

简化题面后其实就是对于要询问的这条边 \(u, v\) 求出将 \(u, v\) 断开后, \(u\) 集合内的元素数量乘 \(v\) 集合里的元素数量

如何确定一条边出现的区间

如果是第 \(x\) 条边,那么出现区间为 \([1, x - 1]\)\([x + 1, q]\)

#include <bits/stdc++.h>using namespace std;const int N = 1e5 + 5;int n, q, u[N], v[N], ans, sz[N], fa[N], len[N];char op[N];bool vis[N];map<pair<int, int>, int > dis;map<pair<int, int>, vector<int> > mp;vector<int> tr[N * 4];vector<pair<int, int> > stk;int find(int x) {if (fa[x] == x) {return x;}return find(fa[x]);
}bool merge(int x, int y) {x = find(x), y = find(y);if (x == y) {return 0;}if (sz[x] > sz[y]) {swap(x, y);}fa[x] = y;sz[y] += sz[x];stk.push_back({x, y});return true;
}void cancel() {auto [x, y] = stk.back();stk.pop_back();sz[y] -= sz[x];fa[x] = x;
}void modify(int i, int l, int r, int x, int y, int p) {if (l > y || r < x) {return ;}if (l >= x && r <= y) {tr[i].push_back(p);return ;}int mid = (l + r) >> 1;modify(i * 2, l, mid, x, y, p);modify(i * 2 + 1, mid + 1, r, x, y, p);
}void query(int i, int l, int r) {int tot = 0;for (auto cur : tr[i]) {tot += merge(u[cur], v[cur]);}if (l == r) {if (vis[l]) {if (l == 4) {// cout << find(u[l]) << " " << find(v[l]) << "dfsafsafda\n";}cout << sz[find(u[l])] * sz[find(v[l])] << "\n";}}else {int mid = (l + r) >> 1;query(i * 2, l, mid);query(i * 2 + 1, mid + 1, r);}while (tot--) {cancel();}
}int main() {ios::sync_with_stdio(0);cin.tie(0);cin >> n >> q;for (int i = 1; i <= n; i++) {fa[i] = i;sz[i] = 1;}for (int i = 1; i <= q; i++) {cin >> op[i] >> u[i] >> v[i];if (op[i] == 'A') {dis[{u[i], v[i]}] = i;}if (op[i] == 'Q') {mp[{u[i], v[i]}].push_back(i);vis[i] = true;}}for (int i = 1; i <= q; i++) {if (op[i] == 'Q') {continue;}if (!mp[{u[i], v[i]}].size()) {modify(1, 1, q, dis[{u[i], v[i]}], q, i);continue;}modify(1, 1, q, dis[{u[i], v[i]}], mp[{u[i], v[i]}][0] - 1, i);for (int j = 1; j < mp[{u[i], v[i]}].size(); j++) {if (mp[{u[i], v[i]}][j - 1] + 1 != mp[{u[i], v[i]}][j]) {modify(1, 1, q, mp[{u[i], v[i]}][j - 1] + 1, mp[{u[i], v[i]}][j] - 1, i);}}if (mp[{u[i], v[i]}][mp[{u[i], v[i]}].size() - 1] != q) {modify(1, 1, q, mp[{u[i], v[i]}][mp[{u[i], v[i]}].size() - 1] + 1, q, i);}}query(1, 1, q);return 0;
}

No Bug No Game

我们可以枚举最后一条边,也就是那个 \(sum + p_i > k\)\(i\),那么 \(i\) 出现的区间就是 \([1, i - 1]\)\([i + 1, q]\),合并时就等于每加入一个物品做一遍背包
code :

#include <bits/stdc++.h>using namespace std;const int N = 3e3 + 5;int n, k, a[N], w[N][15], p[N], tot, dp[N][N], ans;vector<int> tr[N * 4];void modify(int i, int l, int r, int x, int y, int p) {if (l > y || r < x) {return ;}if (l >= x && r <= y) {tr[i].push_back(p);return ;}int mid = (l + r) >> 1;modify(i * 2, l, mid, x, y, p);modify(i * 2 + 1, mid + 1, r, x, y, p);
}void query(int i, int l, int r) {int now = tot;for (auto cur : tr[i]) {tot++;for (int j = 0; j <= k; j++) {dp[tot][j] = dp[tot - 1][j];if (j >= p[cur]) {dp[tot][j] = max(dp[tot][j], dp[tot - 1][j - p[cur]] + w[cur][p[cur]]);}}}if (l == r) {ans = max(ans, dp[tot][k]);for (int j = k - p[l] + 1; j < k; j++) {if (j >= 0) ans = max(ans, dp[tot][j] + w[l][k - j]);}}else {int mid = (l + r) >> 1;query(i * 2, l, mid);query(i * 2 + 1, mid + 1, r);}tot = now;
}int main() {ios::sync_with_stdio(0);cin.tie(0);cin >> n >> k;for (int i = 1; i <= n; i++) {cin >> p[i];for (int j = 1; j <= p[i]; j++) {cin >> w[i][j];}}for (int i = 1; i <= n; i++) {if (i != 1) {modify(1, 1, n, 1, i - 1, i);}if (i != n) {modify(1, 1, n, i + 1, n, i);}}memset(dp, 0xcf, sizeof(dp));dp[0][0] = 0;for (int i = 1; i <= n; i++) {for (int j = 0; j <= k + 10; j++) {dp[i][j] = dp[i - 1][j];if (j >= p[i]) {dp[i][j] = max(dp[i][j], dp[i - 1][j - p[i]] + w[i][p[i]]);}if (j <= k) {ans = max(ans, dp[i][j]);}}}memset(dp, 0xcf, sizeof(dp));dp[0][0] = 0;query(1, 1, n);cout << ans;return 0;
}

Minimum Xor Pair Query

首先一个数出现的范围很明显,那么我们如何得出黑板上写的整数中两个整数的最小可能的按位异或值呢?我们可以维护一个 \(01\) 字典树,每插入一个数就找一遍最小的可能异或值即可
code :

#include <bits/stdc++.h>using namespace std;#define int long long const int N = 3e5 + 5;struct node {int son[2];
}trie[N * 31];int q, op[N], a[N], len[N], ans = 1e18, dcnt = 1, cnt[N * 31];bool vis[N];map<int, vector<int>> mp;vector<int> tr[N * 4];int query(int x) {int sum = 0, cur = 1;for (int i = 30; i >= 0; i--) {int a = (x >= (1 << i));x -= a * (1 << i);if (cnt[trie[cur].son[a]]) {cur = trie[cur].son[a];}else cur = trie[cur].son[a ^ 1], sum += (1 << i);}return sum;
}void insert(int x) {int cur = 1;for (int i = 30; i >= 0; i--) {int a = (x >= (1 << i));x -= a * (1 << i);if (!trie[cur].son[a]) trie[cur].son[a] = ++dcnt;cur = trie[cur].son[a];cnt[cur]++;}
}void erase(int x) {int cur = 1;for (int i = 30; i >= 0; i--) {int a = (x >= (1 << i));x -= a * (1 << i);if (!trie[cur].son[a]) trie[cur].son[a] = ++dcnt;cur = trie[cur].son[a];cnt[cur]--;}
}void modify(int i, int l, int r, int x, int y, int p) {if (l > y || r < x) {return ;}if (l >= x && r <= y) {tr[i].push_back(p);return ;}int mid = (l + r) >> 1;modify(i * 2, l, mid, x, y, p);modify(i * 2 + 1, mid + 1, r, x, y, p);
}void query(int i, int l, int r) {int tot = 0, p = ans;for (auto cur : tr[i]) {ans = min(ans, query(a[cur]));insert(a[cur]);}if (l == r) {if (vis[l]) {cout << ans << "\n";}}else {int mid = (l + r) >> 1;query(i * 2, l, mid);query(i * 2 + 1, mid + 1, r);}for (auto cur : tr[i]) {erase(a[cur]);}ans = p;
}signed main() {ios::sync_with_stdio(0);cin.tie(0);cin >> q;for (int i = 1; i <= q; i++) {cin >> op[i];if (op[i] == 1) {cin >> a[i];mp[a[i]].push_back(i);}else if (op[i] == 2) {cin >> a[i];len[mp[a[i]].back()] = (i - 1) - mp[a[i]].back() + 1;mp[a[i]].pop_back();}else {vis[i] = true;}}for (int i = 1; i <= q; i++) {if (op[i] != 1) {continue;}if (!len[i]) {len[i] = q - i;}modify(1, 1, q, i, i + len[i], i);}query(1, 1, q);return 0;
}

Make Q

对于一个点 \(cur\), 枚举他的三个临点 \(a, b, c\) 其中 \(a, b, c\) 互不相等,那么 \(cur\)\(a\), \(cur\)\(b\)\(a\)\(b\)可以形成一个环,那么\(cur\)\(c\) 就是 "Q" 的那个角,如下图
image
那不就是,一个点出现在 \([1, cur - 1]\)\([cur + 1, n]\),在维护一下 \(floyd\) 即可
code :

#include <bits/stdc++.h>using namespace std;#define int long longconst int N = 3e2 + 5;struct node {int v, w;
};int n, m, tot, tmp[N * 5][N][N], dis[N][N], ans = 1e18;vector<int> tr[N * 5];vector<node> g[N];bool cmp(node _x, node _y) {return _x.w < _y.w;
}void modify(int i, int l, int r, int x, int y, int p) {if (l > y || r < x) {return ;}if (l >= x && r <= y) {tr[i].push_back(p);return ;}int mid = (l + r) >> 1;modify(i * 2, l, mid, x, y, p);modify(i * 2 + 1, mid + 1, r, x, y, p);
}void query(int i, int l, int r) {for (int j = 1; j <= n; j++) {for (int k = 1; k <= n; k++) {tmp[i][j][k] = dis[j][k];}}for (auto cur : tr[i]) {for (int j = 1; j <= n; j++) {for (int k = 1; k <= n; k++) {dis[j][k] = min(dis[j][k], dis[j][cur] + dis[cur][k]);}}}if (l == r) {for (node a : g[l]) {for (node b : g[l]) {if (a.v == b.v) {continue;}int cnt = 0;for (node c : g[l]) {if (cnt >= 5) {break;}if (c.v == a.v || c.v == b.v) {continue;}else {ans = min(ans, dis[a.v][b.v] + a.w + b.w + c.w);cnt++;}}}}}else {int mid = (l + r) >> 1;query(i * 2, l, mid);query(i * 2 + 1, mid + 1, r);}for (int j = 1; j <= n; j++) {for (int k = 1; k <= n; k++) {dis[j][k] = tmp[i][j][k];}}
}signed main() {ios::sync_with_stdio(0);cin.tie(0);cin >> n >> m;memset(dis, 0x3f, sizeof(dis));for (int i = 1, u, v, w; i <= m; i++) {cin >> u >> v >> w;dis[u][v] = dis[v][u] = w;g[u].push_back({v, w});g[v].push_back({u, w});}for (int i = 1; i <= n; i++) {sort(g[i].begin(), g[i].end(), cmp);}for (int i = 1; i <= n; i++) {if (i != 1) {modify(1, 1, n, 1, i - 1, i);}if (i != n) {modify(1, 1, n, i + 1, n, i);}}query(1, 1, n);if (ans == 1e18) {cout << "-1";}else cout << ans;return 0;
}
/*
1 2
2 2 1
*/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/793997.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

无向图的拉普拉斯矩阵

Definition 定义无权重的无向图G=(V,E)。V是顶点集合,E是边集合。 根据G,可得到一系列定义:adjacency matrix(邻接矩阵) 𝐴𝐺 :(1)𝐴𝐺(𝑖,𝑗)={1,(𝑖,𝑗)∈𝐸0,(𝑖,𝑗)∉𝐸 2. degree matrix 𝐷𝐺 : 这是一个对角矩阵,对角线上每个元素…

信息学奥赛初赛天天练-86-NOIP2014普及组-基础题5-球盒问题、枚举算法、单源最短路、Dijkstra算法、Bellman-Ford算法

信息学奥赛初赛天天练-86-NOIP2014普及组-基础题5-球盒问题、枚举算法、单源最短路、Dijkstra算法、Bellman-Ford算法 PDF文档公众号回复关键字:202409081 NOIP 2014 普及组 基础题5 21 把 M个同样的球放到 N个同样的袋子里,允许有的袋子空着不放,问共有多少种不同的放置方法…

搭建内网yum仓库

1.架构图2.环境准备 复制一个虚拟机,修改MAC地址,ip,主机名等 [root@kylin-10-sp3 ~]# hostnamectl set-hostname kylin-sp3-cllient [root@kylin-10-sp3 ~]# [root@kylin-sp3-cllient ~]# vim /etc/sysconfig/network-scripts/ifcfg-ens33 [root@kylin-sp3-cllient ~]#角色…

VS Code 快速输入代码

VS Code 快速输入代码: HTML 代码只输入 ! ,按Enter,这将自动生成一个基本的HTML骨架代码,例如: 快速输入特定的HTML标签,可以使用Emmet插件,它是VS Code的一个扩展,可以通过简短的指令生成复杂的HTML结构。 输入div,按Enter输入div*4,按Enter 例如,输入 ul>li…

微信小程序开发系列4----页面配置--WXML列表渲染

小程序布局-WXML列表渲染 源码获取方式(免费):(1)登录-注册:http://resources.kittytiger.cn/(2)签到获取积分(3)搜索:微信小程序开发2-wxmllist列表渲染

微信小程序开发系列3----页面配置--WXML数据绑定+条件渲染

1小程序布局-WXML数据绑定 有的时候发现需要刷新一下全局的app.js才能有效果。。。。。 2小程序布局-WXML条件渲染 下图会报错:不能在if else 中间插入其他的标签 如下展示一次渲染多个标签使用block 源码获取方式(免费):(1)登录-注册:http://resources.kittytiger.c…

[C++ Daily] 虚表与虚指针的理解

虚表与虚指针的理解结果:

微信小程序开发系列1----账号注册、开发工具下载、小程序代码结构

一、注册小程序账号 url:https://mp.weixin.qq.com/cgi-bin/wx?lang=zh_CN&token= 注册后获取 AppID(小程序ID) 和 AppSecret(小程序密钥)二、微信小程序工具下载 https://developers.weixin.qq.com/miniprogram/dev/devtools/download.html官网文档:https://developers…

可测试,可维护,可移植:上位机软件分层设计的重要性

从三个方面论述了上位机软件分层设计的必要。互联网中,软件工程师岗位会分前端工程师,后端工程师。这是由于互联网软件规模庞大,从业人员众多。前后端分别根据各自需求发展不一样的技术栈。那么上位机软件呢?它规模小,通常一个人就能开发一个项目。它还有必要分前后端吗?…

【漏洞分享】2018年-2024年HVV 6000+个漏洞 POC 合集分享

此份poc 集成了Zabbix、用友、通达、Wordpress、Thinkcmf、Weblogic、Tomcat等 下载链接: 链接: https://pan.quark.cn/s/1cd7d8607b8a看着就真的看着,不学就真的5

【工具推荐】FindEverything(最新版) - 内网渗透必备 敏感文件搜索工具

工具介绍 内网渗透过程中搜寻指定文件内容,从而找到突破口的一个小工具 下载链接: 链接: https://pan.quark.cn/s/067a43165790使用说明 python3 FindEverything.py -n .txt,.ini,.yaml,.php,.jsp,.java,.xml,.sql -c "password=" -d D:/ python3 FindEverything.p…

不可不知的WPF几何图形(Geometry)

在软件行业,经常会听到一句话“文不如表,表不如图”说明了图形在软件应用中的重要性。同样在WPF开发中,为了程序美观或者业务需要,经常会用到各种个样的图形。今天以一些简单的小例子,简述WPF开发中几何图形(Geometry)相关内容,仅供学习分享使用,如有不足之处,还请指…