第十七讲 为什么这些SQL语句逻辑相同,性能却差异巨大?

news/2024/9/19 16:18:53/文章来源:https://www.cnblogs.com/guixiangyyds/p/18410990

第十七讲: 为什么这些SQL语句逻辑相同,性能却差异巨大?

简概:

img

引入:

​ 在 MySQL 中,有很多看上去逻辑相同,但性能却差异巨大的 SQL 语句。对这些语句使用不当的话,就会不经意间导致整个数据库的压力变大。我今天挑选了三个这样的案例和你分享。希望再遇到相似的问题时,你可以做到举一反三、快速解决问题。

案例一:条件字段函数操作

​ 假设你现在维护了一个交易系统,其中交易记录表 tradelog 包含交易流水号(tradeid)、交易员 id(operator)、交易时间(t_modified)等字段。为了便于描述,我们先忽略其他字段。这个表的建表语句如下:

mysql> CREATE TABLE `tradelog` (`id` int(11) NOT NULL,`tradeid` varchar(32) DEFAULT NULL,`operator` int(11) DEFAULT NULL,`t_modified` datetime DEFAULT NULL,PRIMARY KEY (`id`),KEY `tradeid` (`tradeid`),KEY `t_modified` (`t_modified`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

​ 假设,现在已经记录了从 2016 年初到 2018 年底的所有数据,运营部门有一个需求是,要统计发生在所有年份中 7 月份的交易记录总数

​ 这个逻辑看上去并不复杂,你的 SQL 语句可能会这么写:

mysql> select count(*) from tradelog where month(t_modified)=7;

​ 由于 t_modified 字段上有索引,于是你就很放心地在生产库中执行了这条语句,但却发现执行了特别久,才返回了结果。

靠,我第一想法也是这个

​ 如果你问 DBA 同事为什么会出现这样的情况,他大概会告诉你:如果对字段做了函数计算,就用不上索引了,这是 MySQL 的规定

​ 现在你已经学过了 InnoDB 的索引结构了,可以再追问一句为什么?

​ 为什么条件是 where t_modified='2018-7-1’的时候可以用上索引,而改成where month(t_modified)=7的时候就不行了?

​ 下面是这个 t_modified 索引的示意图。方框上面的数字就是 month() 函数对应的值。


图 1 t_modified 索引示意图

​ 如果你的 SQL 语句条件用的是 where t_modified='2018-7-1’的话,引擎就会按照上面绿色箭头的路线,快速定位到 t_modified='2018-7-1’需要的结果。

​ 实际上,B+ 树提供的这个快速定位能力,来源于同一层兄弟节点的有序性

​ 但是,如果计算 month() 函数的话,你会看到传入 7 的时候,在树的第一层就不知道该怎么办了。也就是说,对索引字段做函数操作,可能会破坏索引值的有序性,因此优化器就决定放弃走树搜索功能。

​ 需要注意的是,优化器并不是要放弃使用这个索引。在这个例子里,放弃了树搜索功能,优化器可以选择遍历主键索引,也可以选择遍历索引 t_modified,优化器对比索引大小后发现,索引 t_modified 更小,遍历这个索引比遍历主键索引来得更快。因此最终还是会选择索引 t_modified。接下来,我们使用 explain 命令,查看一下这条 SQL 语句的执行结果。


图 2 explain 结果
  • key="t_modified"表示的是,使用了 t_modified 这个索引;
  • 我在测试表数据中插入了 10 万行数据,rows=100335,说明这条语句扫描了整个索引的所有值;
  • Extra 字段的 Using index,表示的是使用了覆盖索引

​ 也就是说,由于在 t_modified 字段加了 month() 函数操作,导致了全索引扫描。为了能够用上索引的快速定位能力,我们就要把 SQL 语句改成基于字段本身的范围查询。按照下面这个写法,优化器就能按照我们预期的,用上 t_modified 索引的快速定位能力了。

mysql> select count(*) from tradelog where-> (t_modified >= '2016-7-1' and t_modified<'2016-8-1') or-> (t_modified >= '2017-7-1' and t_modified<'2017-8-1') or -> (t_modified >= '2018-7-1' and t_modified<'2018-8-1');

[!important]

​ where 后面有or不是会导致索引部分失效吗?不会,只要是同个字段就不会失效

​ 即使使用上了索引,也可能没有使用它的搜索功能,只是使用上进行遍历

全索引扫描表示用了覆盖索引全表扫描,不等于使用了索引的树搜索

​ 当然,如果你的系统上线时间更早,或者后面又插入了之后年份的数据的话,你就需要再把其他年份补齐。

到这里我给你说明了,由于加了 month() 函数操作,MySQL 无法再使用索引快速定位功能,而只能使用全索引扫描。

​ 不过优化器在个问题上确实有“偷懒”行为,即使是对于不改变有序性的函数,也不会考虑使用索引

​ 比如,对于select * from tradelog where id + 1 = 10000这个 SQL 语句,这个加 1 操作并不会改变有序性,但是 MySQL 优化器还是不能用 id 索引快速定位到 9999 这一行。所以,需要你在写 SQL 语句的时候,手动改写成 where id = 10000 -1 才可以

案例二:隐式类型转换

​ 接下来我再跟你说一说,另一个经常让程序员掉坑里的例子。我们一起看一下这条 SQL 语句:

mysql> select * from tradelog where tradeid=110717;

​ 交易编号 tradeid 这个字段上,本来就有索引,但是 explain 的结果却显示,这条语句需要走全表扫描。

​ 你可能也发现了,tradeid 的字段类型是 varchar(32),而输入的参数却是整型,所以需要做类型转换。

​ 那么,现在这里就有两个问题:

  1. 数据类型转换的规则是什么?
  2. 为什么有数据类型转换,就需要走全索引扫描?

​ 先来看第一个问题,你可能会说,数据库里面类型这么多,这种数据类型转换规则更多,我记不住,应该怎么办呢?

​ 这里有一个简单的方法,看 select “10” > 9 的结果:

  1. 如果规则是“将字符串转成数字”,那么就是做数字比较,结果应该是 1;

  2. 如果规则是“将数字转成字符串”,那么就是做字符串比较,结果应该是 0。

[!caution]

字符串比较大小是逐位从高位到低位逐个比较(按ascii码) 那么“10”的“1”的ascii比“9”小,所以结果为0

​ 验证结果如图 3 所示。


图 3 MySQL 中字符串和数字转换的效果示意图

​ 从图中可知,select “10” > 9 返回的是 1,所以你就能确认 MySQL 里的转换规则了:在 MySQL 中,字符串和数字做比较的话,是将字符串转换成数字。

​ 这时,你再看这个全表扫描的语句:

mysql> select * from tradelog where tradeid=110717;

​ 就知道对于优化器来说,这个语句相当于:

mysql> select * from tradelog where  CAST(tradid AS signed int) = 110717;

​ 也就是说,这条语句触发了我们上面说到的规则:对索引字段做函数操作,优化器会放弃走树搜索功能

提问

​ 现在,我留给你一个小问题,id 的类型是 int,如果执行下面这个语句,是否会导致全表扫描呢?

select * from tradelog where id="83126";

​ 你可以先自己分析一下,再到数据库里面去验证确认。接下来,我们再来看一个稍微复杂点的例子。

答案

​ 语句如下:select * from tradelog where id="83126";

​ 上面的语句不会全表扫描,而是会走索引搜索树;

​ 原因:因为字段id类型为int,所以会将"83126"隐式的从varchar -> int,而索引字段id并没有被函数操作,所以依然会走索引;

案例三:隐式字符编码转换

​ 假设系统里还有另外一个表 trade_detail,用于记录交易的操作细节。为了便于量化分析和复现,我往交易日志表 tradelog 和交易详情表 trade_detail 这两个表里插入一些数据。

mysql> CREATE TABLE `trade_detail` (`id` int(11) NOT NULL,`tradeid` varchar(32) DEFAULT NULL,`trade_step` int(11) DEFAULT NULL, /*操作步骤*/`step_info` varchar(32) DEFAULT NULL, /*步骤信息*/PRIMARY KEY (`id`),KEY `tradeid` (`tradeid`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;insert into tradelog values(1, 'aaaaaaaa', 1000, now());
insert into tradelog values(2, 'aaaaaaab', 1000, now());
insert into tradelog values(3, 'aaaaaaac', 1000, now());insert into trade_detail values(1, 'aaaaaaaa', 1, 'add');
insert into trade_detail values(2, 'aaaaaaaa', 2, 'update');
insert into trade_detail values(3, 'aaaaaaaa', 3, 'commit');
insert into trade_detail values(4, 'aaaaaaab', 1, 'add');
insert into trade_detail values(5, 'aaaaaaab', 2, 'update');
insert into trade_detail values(6, 'aaaaaaab', 3, 'update again');
insert into trade_detail values(7, 'aaaaaaab', 4, 'commit');
insert into trade_detail values(8, 'aaaaaaac', 1, 'add');
insert into trade_detail values(9, 'aaaaaaac', 2, 'update');
insert into trade_detail values(10, 'aaaaaaac', 3, 'update again');
insert into trade_detail values(11, 'aaaaaaac', 4, 'commit');

​ 这时候,如果要查询 id=2 的交易的所有操作步骤信息,SQL 语句可以这么写:

mysql> select d.* from tradelog l, trade_detail d where d.tradeid=l.tradeid and l.id=2; /*语句Q1*/
select d.*   
from tradelog l, trade_detail d   
where d.tradeid=l.tradeid and l.id=2;

图 4 语句 Q1 的 explain 结果

[!tip]

等效于下面(指意思相同)

SELECT d.*  
FROM trade_detail d  
INNER JOIN tradelog l ON d.tradeid = l.tradeid  
WHERE l.id = 2;

​ 查询返回了所有与tradelog表中id为2的记录相关联的trade_detail表的记录。换句话说,它查找了ID为2的交易的所有详细信息。

​ 我们一起来看下这个结果:

  • 第一行显示优化器会先在交易记录表 tradelog 上查到 id=2 的行,这个步骤用上了主键索引,rows=1 表示只扫描一行;
  • 第二行 key=NULL,表示没有用上交易详情表 trade_detail 上的 tradeid 索引,进行了全表扫描。

key =NULL 说明没有走索引

​ 在这个执行计划里,是从 tradelog 表中取 tradeid 字段,再去 trade_detail 表里查询匹配字段。因此,我们把 tradelog 称为驱动表,把 trade_detail 称为被驱动表,把 tradeid 称为关联字段

1 LEFT JOIN 左连接,左边为驱动表,右边为被驱动表.

2 RIGHT JOIN 右连接,右边为驱动表,左边为被驱动表.

3 INNER JOIN 内连接, mysql会选择数据量比较小的表作为驱动表,大表作为被驱动表.

4 可通过EXPLANIN查看SQL语句的执行计划,EXPLANIN分析的第一行的表即是驱动表.

​ 接下来,我们看下这个 explain 结果表示的执行流程:


图 5 语句 Q1 的执行过程

​ 图中:

  • 第 1 步,是根据 id 在 tradelog 表里找到 L2 这一行;

  • 第 2 步,是从 L2 中取出 tradeid 字段的值;

  • 第 3 步,是根据 tradeid 值到 trade_detail 表中查找条件匹配的行。

​ explain 的结果里面第二行的 key=NULL 表示的就是,这个过程是通过遍历主键索引的方式,一个一个地判断 tradeid 的值是否匹配。

全表扫描就是走主键索引一条条比对

​ 进行到这里,你会发现第 3 步不符合我们的预期。因为表 trade_detail 里 tradeid 字段上是有索引的,我们本来是希望通过使用 tradeid 索引能够快速定位到等值的行。但,这里并没有。

​ 如果你去问 DBA 同学,他们可能会告诉你,因为这两个表的字符集不同,一个是 utf8,一个是 utf8mb4,所以做表连接查询的时候用不上关联字段的索引。

表之间字符集不同导致关联表的时候,没办法用上索引

​ 这个回答,也是通常你搜索这个问题时会得到的答案。

​ 但是你应该再追问一下,为什么字符集不同就用不上索引呢?我们说问题是出在执行步骤的第 3 步,如果单独把这一步改成 SQL 语句的话,那就是:

mysql> select * from trade_detail where tradeid=$L2.tradeid.value; 

​ 其中,$L2.tradeid.value 的字符集是 utf8mb4。

​ 参照前面的两个例子,你肯定就想到了,字符集 utf8mb4 是 utf8 的超集,所以当这两个类型的字符串在做比较的时候,MySQL 内部的操作是,先把 utf8 字符串转成 utf8mb4 字符集,再做比较。

​ 这个设定很好理解,utf8mb4 是 utf8 的超集。类似地,在程序设计语言里面,做自动类型转换的时候,为了避免数据在转换过程中由于截断导致数据错误,也都是“按数据长度增加的方向”进行转换的。

​ 因此, 在执行上面这个语句的时候,需要将被驱动数据表里的字段一个个地转换成 utf8mb4,再跟 L2 做比较。也就是说,实际上这个语句等同于下面这个写法:

select * from trade_detail  where CONVERT(traideid USING utf8mb4)=$L2.tradeid.value; 

CONVERT() 函数,在这里的意思是把输入的字符串转成 utf8mb4 字符集

​ 这就再次触发了我们上面说到的原则:对索引字段做函数操作,优化器会放弃走树搜索功能。到这里,你终于明确了,字符集不同只是条件之一,连接过程中要求在被驱动表的索引字段上加函数操作,是直接导致对被驱动表做全表扫描的原因

[!caution]

​ 隐式的字符编码转换会用到函数,也就使得对索引字段做了函数操作,优化器会放弃树搜索转而进行全索引扫描

​ 显式函数操作:加减运算等 隐式函数操作:类型转换

​ 作为对比验证,我给你提另外一个需求,“查找 trade_detail 表里 id=4 的操作,对应的操作者是谁”,再来看下这个语句和它的执行计划。

select l.operator from tradelog l , trade_detail d where d.tradeid=l.tradeid and d.id=4;

图 6 explain 结果

​ 这个语句里 trade_detail 表成了驱动表,但是 explain 结果的第二行显示,这次的查询操作用上了被驱动表 tradelog 里的索引 (tradeid),扫描行数是 1。

这也是两个 tradeid 字段的 join 操作,为什么这次能用上被驱动表的 tradeid 索引呢?

​ 我们来分析一下。假设驱动表 trade_detail 里 id=4 的行记为 R4,那么在连接的时候(图 5 的第 3 步),被驱动表 tradelog 上执行的就是类似这样的 SQL 语句:

select operator from tradelog  where traideid =$R4.tradeid.value; 

​ 这时候 $R4.tradeid.value 的字符集是 utf8, 按照字符集转换规则,要转成 utf8mb4,所以这个过程就被改写成:

​ 你看,这里的 CONVERT 函数是加在输入参数上的,这样就可以用上被驱动表的 traideid 索引。理解了原理以后,就可以用来指导操作了。如果要优化语句

select d.* from tradelog l, trade_detail d where d.tradeid=l.tradeid and l.id=2;

​ 的执行过程,有两种做法:

  • 比较常见的优化方法是,把 trade_detail 表上的 tradeid 字段的字符集也改成 utf8mb4,这样就没有字符集转换的问题了。
alter table trade_detail modify tradeid varchar(32) CHARACTER SET utf8mb4 default null;
  • 如果能够修改字段的字符集的话,是最好不过了。但如果数据量比较大, 或者业务上暂时不能做这个 DDL 的话,那就只能采用修改 SQL 语句的方法了。
select d.* from tradelog l , trade_detail d where d.tradeid=CONVERT(l.tradeid USING utf8) and l.id=2; 

图 7 SQL 语句优化后的 explain 结果

​ 这里,我主动把 l.tradeid 转成 utf8,就避免了被驱动表上的字符编码转换,从 explain 结果可以看到,这次索引走对了。

小结

​ 今天我给你举了三个例子,其实是在说同一件事儿,即:对索引字段做函数操作,可能会破坏索引值的有序性,因此优化器就决定放弃走树搜索功能。

​ 第二个例子是隐式类型转换,第三个例子是隐式字符编码转换,它们都跟第一个例子一样,因为要求在索引字段上做函数操作而导致了全索引扫描。

​ MySQL 的优化器确实有“偷懒”的嫌疑,即使简单地把 where id+1=1000 改写成 where id=1000-1 就能够用上索引快速查找,也不会主动做这个语句重写。

​ 因此,每次你的业务代码升级时,把可能出现的、新的 SQL 语句 explain 一下,是一个很好的习惯。

问答

​ 表结构如下:

mysql> CREATE TABLE `table_a` (`id` int(11) NOT NULL,`b` varchar(10) DEFAULT NULL,PRIMARY KEY (`id`),KEY `b` (`b`)
) ENGINE=InnoDB;

​ 假设现在表里面,有 100 万行数据,其中有 10 万行数据的 b 的值是’1234567890’, 假设现在执行语句是这么写的:

mysql> select * from table_a where b='1234567890abcd';

​ 这时候,MySQL 会怎么执行呢?

​ 最理想的情况是,MySQL 看到字段 b 定义的是 varchar(10),那肯定返回空呀。

​ 可惜,MySQL 并没有这么做。

​ 那要不,就是把’1234567890abcd’拿到索引里面去做匹配,肯定也没能够快速判断出索引树 b 上并没有这个值,也很快就能返回空结果。

​ 但实际上,MySQL 也不是这么做的。

答案

​ 这条 SQL 语句的执行很慢,流程是这样的:

  1. 在传给引擎执行的时候,做了字符截断。因为引擎里面这个行只定义了长度是 10,所以只截了前 10 个字节,就是’1234567890’进去做匹配;
  2. 这样满足条件的数据有 10 万行;
  3. 因为是 select *, 所以要做 10 万次回表;
  4. 但是每次回表以后查出整行,到 server 层一判断,b 的值都不是’1234567890abcd’;
  5. 返回结果是空。

​ 这个例子,是我们文章内容的一个很好的补充。虽然执行过程中可能经过函数操作,但是最终在拿到结果后,server 层还是要做一轮判断的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/796206.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024-09-12 TypeError: Cannot read properties of undefined (reading 0) ==》检查未定义的对象or数组

TypeError: Cannot read properties of undefined (reading 0) ==》TypeError:无法读取undefined的属性(读取“0”) 请记住出现这种错误大多数都是因为你读取了未定义的对象或数组 排查结果:后端返回的id由原来的小写id改成了大写Id。 666,服了,哥们。

UNO 已知问题 在后台线程触发 SKXamlCanvas 的 Invalidate 且在 PaintSurface 事件抛出异常将炸掉应用

本文记录一个 UNO 已知问题,在 UNO 里面可以利用 SKXamlCanvas 对接 Skia 绘制到应用里面。如果此时在后台线程里面调用 SKXamlCanvas 的 Invalidate 触发界面的重新刷新,但在具体的执行绘制 PaintSurface 事件里面对外抛出异常,将会导致应用炸掉背景: 我准备在 UNO 里面将…

WPF 的 WriteableBitmap 在 Intel 11 代 Iris Xe Graphics 核显设备上停止渲染

在 Intel 11 代锐炬 Intel Iris Xe Graphics 核显设备上,如果此设备使用旧版本驱动,则可能导致 WPF 的 WriteableBitmap 停止渲染。此问题和 WPF 无关,此问题是 Intel 的 bug 且最新驱动版本已修复官方问题记录地址:https://www.intel.cn/content/www/cn/zh/support/articl…

WPF 的 Viewport3D 等 3D 模块在带 Intel UHD 770 设备上抛出渲染异常

在带 Intel UHD 770 的设备上,使用旧版本驱动,即小于 30.0.101.1660 版本驱动,将会导致 WPF 的 3D 模块出现渲染异常。此问题和 WPF 无关,此问题是 Intel 的 bug 且最新驱动版本已修复官方问题记录地址:https://community.intel.com/t5/Graphics/Crash-with-UHD-770-in-WP…

【Azure Service Bus】批量处理Service Bus Topic 中的死信消息(dead-lettered messages)

问题描述 在Azure的门户页面上,因为Service Bus Topic中有很多dead-lettered message,而这些消息占用了大量的存储空间,通过门户上的Service Bus Explorer每次只能消费一条消息。 虽然可以通过修改代码来指定消费私信队列中消息,但是需要修改代码,需要一些工作量。 有没有…

Transformer两大发展方向——GPT系列及BERT(一)

前面介绍了Transformer,随着其发展在NLP领域应用越来越多,在其基础上主要有两篇影响非常大的文章,一篇是GPT,另一篇是BERT。OpenAI提出的GPT采用Transformer解码器结构,一路更新迭代到了现在有了GPT-4,而Google提出的BERT采用Transformer的编码器结构。大体时间线如下图所…

RustPython简单使用

RustPython介绍 同CPython,Jpython,PyPy一样,RustPython,是使用Rust语言实现的Python解释器,支持Python3语法。 项目地址:https://github.com/RustPython/RustPython RustPython真正方便的是可以编译成Wasm文件,可以直接在浏览器中使用,示例网站:https://rustpython.g…

【解题报告】P8478 「GLR-R3」清明

我无可代替,哪怕来历已不神秘;麦克风接力,百万人就等我出席。P8478 「GLR-R3」清明 参考了出题人题解和 xcyyyyyy 大神的题解,强推前两篇。 拿到题完全没思路怎么办??? 人类智慧的巅峰,思维量的登峰造极。 换句话说就是非人题目,不过不得不说 GLR 的题是真的好,难度也…

Openwrt安装ddns-go

必备条件已刷好OpenWRT的路由 Openwrt已配置好网络根据CPU架构下载DDNS-go 我用的是迅雷赚钱宝1代,其CPU是arm7,所以要下载对应的arm7版本 https://github.com/jeessy2/ddns-go/releases 解压文件,将文件复制到openwrt 用WinSCP连接OpenWRT,复制ddns-go进去 WinSCP下载 如果…

python如何使用 秘钥证书 进行 SM2 加密

最近一个项目,需要使用sm2非对称加密,对方直接给的秘钥证书,python使用gmssl 进行加密,解密,加签,验签用的秘钥是这种格式 # Private Key秘钥 5aa03412c3051e1d4cf9d19cfbeeec70c28f388c9f82747cc912096c9cd44bea # Public Key 公钥 044291b381a039a8d7d02d7272d2d7c78a30d33e…

让小爱音箱播放电脑/NAS上歌曲,支持自动从哔哩哔哩/油管下载歌曲,无需刷机。支持语音控制和WebUI控制,docker部署多平台兼容,解决仅能播放试听版的苦恼

小米AI音箱很多人都有,但使用中播放歌曲时总是提示仅能播放试听版,不能完整听歌,很烦人。今天介绍的方法就是要彻底解决这个问题,实现让小爱AI音箱能够播放本地歌曲,本地没有的歌曲还能自动从网上搜索下载的功能。 已测试支持的设备:型号 名称L06A 小爱音箱L07A Redmi小爱…

Linux系统搭建性能测试监控体系

一.安装Grafana 1.Grafana介绍: Grafana是一个开源的监控和可视化工具,用于显示和跟踪各种指标,数据和日志,支持多种源,包括influxDB、prometheus、mango DB,Redis,Mysql,PostgreSQL等。它提供多种图标类型,饼图,支持设置预警机制,当监控指标超出预定阈值时,可以通过em…