频率响应 公式推导
正弦输入的一般形式
\[u(t)=Asin(\omega_i)+bcos(\omega_i)
\]
整理
\[u(t)=M_i sin(\omega_i t + \phi_i) \\其中 \phi_i=arctan \frac{B}{A} \qquad ,M_i=\sqrt{A^2+B^2}
\]
输入到系统 G(s)
\[\begin{aligned}
U(s)& =\mathcal{L}[u\left(t\right)]=\mathcal{L}[A\sin(\omega_{\mathrm{i}}t)+B\cos(\omega_{\mathrm{i}}t)] \\
&=\mathcal{L}[A\sin(\omega_{\mathrm{i}}t)]+\mathcal{L}[B\cos(\omega_{\mathrm{i}}t)] \\
&=\frac{A\omega_{\mathrm{i}}}{s^{2}+\omega_{\mathrm{i}}^{2}}+\frac{Bs}{s^{2}+\omega_{\mathrm{i}}^{2}}=\frac{A\omega_{\mathrm{i}}+Bs}{s^{2}+\omega_{\mathrm{i}}^{2}}=\frac{A\omega_{\mathrm{i}}+Bs}{(s+\mathrm{j}\omega_{\mathrm{i}})(s-\mathrm{j}\omega_{\mathrm{i}})}
\end{aligned}
\]
传递函数G(s)
\[G(s)=\frac{N(s)}{D(s)}=\frac{(s-s_{z1})(s-s_{z2})\cdots(s-s_{zm})}{(s-s_{p1})(s-s_{p2})\cdots(s-s_{pn})},\quad n>m
\]
系统输出
\[X(s)=U(s)G(s)=\frac{A\omega_{\mathrm{i}}+Bs}{(s+\mathrm{j}\omega_{\mathrm{i}})(s-\mathrm{j}\omega_{\mathrm{i}})}\frac{N(s)}{D(s)}
\]
分解可得
\[\begin{aligned}
X\left(s\right)=& \frac{A\omega_{\mathrm{i}}+Bs}{(s+\mathrm{j}\omega_{\mathrm{i}})(s-\mathrm{j}\omega_{\mathrm{i}})} \frac{N(s)}{D(s)} \\
\text{=}& \frac{A\omega_{\mathrm{i}}+Bs}{(s+\mathrm{j}\omega_{\mathrm{i}})(s-\mathrm{j}\omega_{\mathrm{i}})}\frac{N(s)}{(s-s_{\mathrm{pl}})(s-s_{\mathrm{p2}})\cdots(s-s_{\mathrm{pn}})} \\
\text{=}& \frac{K_{1}}{s+\mathrm{j}\omega_{\mathrm{i}}}+\frac{K_{2}}{s-\mathrm{j}\omega_{\mathrm{i}}}+\frac{C_{1}}{s-s_{\mathrm{p1}}}+\frac{C_{2}}{s-s_{\mathrm{p2}}}+\cdots+\frac{C_{n}}{s-s_{\mathrm{pn}}}
\end{aligned}
\]
对其进行逆变换
\[\begin{aligned}
x\left(t\right)& =\mathcal{L}^{-1}\bigl[X\left(s\right)\bigr]=\mathcal{L}^{-1}\left[\frac{K_{1}}{s+\mathrm{j}\omega_{\mathrm{i}}}+\frac{K_{2}}{s-\mathrm{j}\omega_{\mathrm{i}}}+\frac{C_{1}}{s-s_{\mathrm{p1}}}+\frac{C_{2}}{s-s_{\mathrm{p2}}}+\cdots+\frac{C_{n}}{s-s_{\mathrm{pn}}}\right] \\
&=K_{1}\mathrm{e}^{-\mathrm{j}\omega_{\mathrm{i}}t}+K_{2}\mathrm{e}^{\mathrm{j}\omega_{\mathrm{i}}t}+C_{1}\mathrm{e}^{s_{\mathrm{p}1}t}+C_{2}\mathrm{e}^{s_{\mathrm{p}2}t}+\cdots+C_{n}\mathrm{e}^{s_{\mathrm{p}n}t}
\end{aligned}
\]
当传递函数 \(G(s)\) 的极点\(s_\mathrm{p1},s_\mathrm{p2},\cdotp\cdotp\cdotp,s_\mathrm{pn}\)的实部都小于 0 时, \(C_1\mathrm{e}^{s_{p1}t},C_2\mathrm{e}^{s_{p2}t},\cdots,C_n\mathrm{e}^{s_{pn}t}\)会随着时间\(t\)的增加而趋于 0。也只有在这种情况下,系统的频率响应分析才有意义,否则系统的输出将无穷大。此时,系统的稳态输出为
\[x_{ss}(t)=K_{1}\mathrm{e}^{-\mathrm{j}\omega_{\mathrm{i}}t}+K_{2}\mathrm{e}^{\mathrm{j}\omega_{\mathrm{i}}t}
\]
求\(K_1,K_2\)
\[\begin{aligned}
(A\omega_{\mathrm{i}}+Bs)N(s)& =K_{1}(s-\mathrm{j}\omega_{\mathrm{i}})D(s)+K_{2}(s+\mathrm{j}\omega_{\mathrm{i}})D(s)+ \\
&C_1(s+\mathrm{j}\omega_\mathrm{i})(s-\mathrm{j}\omega_\mathrm{i})(s-s_\mathrm{p2})\cdotp\cdotp\cdotp(s-s_\mathrm{pn})+ \\
&C_2(s+\mathrm{j}\omega_\mathrm{i})(s-\mathrm{j}\omega_\mathrm{i})(s-s_\mathrm{p1})(s-s_\mathrm{p3})\cdots(s-s_\mathrm{pn})+\cdots+ \\
&C_n(s-\mathrm{j}\omega_i)(s+\mathrm{j}\omega_i)(s-s_{p1})\cdotp\cdotp\cdotp(s-s_{pn-1})
\end{aligned}
\]
把\(s=-j\omega_i\) 代入
\[(A\omega_{\mathrm{i}}+B(-j\omega_{\mathrm{i}}))N(-j\omega_{\mathrm{i}})=K_{1}(-j\omega_{\mathrm{i}}-j\omega_{\mathrm{i}})D(-j\omega_{\mathrm{i}})\\\Rightarrow K_{1}=\frac{A\omega_{\mathrm{i}}+B(-j\omega_{\mathrm{i}})}{-2j\omega_{\mathrm{i}}}\frac{N(-j\omega_{\mathrm{i}})}{D(-j\omega_{\mathrm{i}})}=\frac{B+Aj}{2}G(-j\omega_{\mathrm{i}})
\]
把\(s=j\omega_i\) 代入
\[(A\omega_{\mathrm{i}}+B\left(\mathrm{j}\omega_{\mathrm{i}}\right))N\left(\mathrm{j}\omega_{\mathrm{i}}\right)=K_{2}\left(\mathrm{j}\omega_{\mathrm{i}}+\mathrm{j}\omega_{\mathrm{i}}\right)D\left(\mathrm{j}\omega_{\mathrm{i}}\right)\\\Rightarrow K_{2}=\frac{A\omega_{\mathrm{i}}+B\left(\mathrm{j}\omega_{\mathrm{i}}\right)}{2\mathrm{j}\omega_{\mathrm{i}}}\frac{N\left(\mathrm{j}\omega_{\mathrm{i}}\right)}{D\left(\mathrm{j}\omega_{\mathrm{i}}\right)}=\frac{B-A\mathrm{j}}{2}G\left(\mathrm{j}\omega_{\mathrm{i}}\right)
\]
\(G(j\omega_i)\) 是一个复数,可以写成指数形式
\[G(j\omega_i)=|G(j\omega_i)|e^{j\angle G(j\omega_{i})}
\]
传递函数\(G(s)\)是输出与输入的拉普拉斯变换的比值。当\(s=\)j\(\omega _i\)的时候,拉普拉斯变换变成了傅里叶变换。实信号函数的傅里叶变换属于埃尔米特函数(Hermitian Function),符合共轭对称。
根据上述结论,\(G( -\)j\(\omega _\mathrm{i}\))与\(G(\)j\(\omega _\mathrm{i}\))共轭,\(G(\)j\(\omega _\mathrm{i}\))和\(G( -\)j\(\omega _\mathrm{i}\))的示意图如图 所示,它们的模相同,相位相反,得到
\[G(-\mathrm{j}\omega_{\mathrm{i}})=\mid G(-\mathrm{j}\omega_{\mathrm{i}})\mid\mathrm{e}^{\mathrm{j}\angle G(-\mathrm{j}\omega_{\mathrm{i}})}=\mid G(\mathrm{j}\omega_{\mathrm{i}})\mid\mathrm{e}^{-\mathrm{j}\angle G(\mathrm{j}\omega_{\mathrm{i}})}
\]
代入得
\[K_{1}=\frac{B+A\mathrm{j}}{2}G\left(-\mathrm{j}\omega_{\mathrm{i}}\right)=\frac{B+A\mathrm{j}}{2}\mid G\left(\mathrm{j}\omega_{\mathrm{i}}\right)\mid\mathrm{e}^{-\mathrm{j}\angle G\left(\mathrm{j}\omega_{\mathrm{i}}\right)}\\K_{2}=\frac{B-A\mathrm{j}}{2}G\left(\mathrm{j}\omega_{\mathrm{i}}\right)=\frac{B-A\mathrm{j}}{2}\mid G\left(\mathrm{j}\omega_{\mathrm{i}}\right)\mid\mathrm{e}^{\mathrm{j}\angle G\left(\mathrm{j}\omega_{\mathrm{i}}\right)}
\]
代回得
\[\begin{aligned}
x_{ss}(t)& =K_{1}\mathrm{e}^{-\mathrm{j}\omega_{\mathrm{i}}t}+K_{2}\mathrm{e}^{\mathrm{j}\omega_{\mathrm{i}}t} \\
&=\frac{B+A\mathrm{j}}{2}\mid G(\mathrm{j}\omega_{\mathrm{i}})\mid\mathrm{e}^{-\mathrm{j}\angle G(\mathrm{j}\omega_{\mathrm{i}})}\mathrm{e}^{-\mathrm{j}\omega_{\mathrm{i}}t}+\frac{B-A\mathrm{j}}{2}\mid G(\mathrm{j}\omega_{\mathrm{i}})\mid\mathrm{e}^{\mathrm{j}\angle G(\mathrm{j}\omega_{\mathrm{i}})}\mathrm{e}^{\mathrm{j}\omega_{\mathrm{i}}t} \\
&=\frac{B+A\mathrm{j}}{2}\mid G(\mathrm{j\omega_{i}})\mid\mathrm{e}^{\mathrm{j(-\angle G(j\omega_{i})-\omega_{i}t)}}+\frac{B-A\mathrm{j}}{2}\mid G(\mathrm{j\omega_{i}})\mid\mathrm{e}^{\mathrm{j(\angle G(j\omega_{i})+\omega_{i}t)}} \\
&=\frac{1}{2}\mid G(\mathrm{j}\omega_{\mathrm{i}})\mid\left[(B+A\mathrm{j})\mathrm{e}^{\mathrm{j}(-\angle G(\mathrm{j}\omega_{\mathrm{i}})-\omega_{\mathrm{i}}t)}+(B-A\mathrm{j})\mathrm{e}^{\mathrm{j}(\angle G(\mathrm{j}\omega_{\mathrm{i}})+\omega_{\mathrm{i}}t)}\right]
\end{aligned}
\]
根据欧拉公式 $ cos\varphi+\mathrm{jsin}\varphi=\mathrm{e}^{\mathrm{j}\varphi} $, 可得
\[\begin{aligned}
\mathrm{e}^{\mathrm{j}(-\angle G(\mathrm{j}\omega_{\mathrm{i}})-\omega_{\mathrm{i}}t)}& =\cos(-\angle G(j\omega_{\mathrm{i}})-\omega_{\mathrm{i}}t)+\mathrm{jsin}(-\angle G(j\omega_{\mathrm{i}})-\omega_{\mathrm{i}}t) \\
&=\cos(\angle G(\mathrm{j}\omega_{\mathrm{i}})+\omega_{\mathrm{i}}t)-\mathrm{j}\sin(\angle G(\mathrm{j}\omega_{\mathrm{i}})+\omega_{\mathrm{i}}t) \\
\mathrm{e}^{\mathrm{j}(\angle G(\mathrm{j}\omega_{i})+\omega_{i}t)}& =\cos(\angle G(\mathrm{j}\omega_{\mathrm{i}})+\omega_{\mathrm{i}}t)+\mathrm{j}\sin(\angle G(\mathrm{j}\omega_{\mathrm{i}})+\omega_{\mathrm{i}}t)
\end{aligned}
\]
代入
\[\begin{aligned}
x_{ss}(t)& =\frac{1}{2}\mid G(\mathrm{j\omega_{i}})\mid\left[2B\cos(\angle G(\mathrm{j\omega_{i}})+\omega_{\mathrm{i}}t)+2A\sin(\angle G(\mathrm{j\omega_{i}})+\omega_{\mathrm{i}}t)\right] \\
&=\mid G(\mathrm{j}\omega_{\mathrm{i}})\mid\sqrt{A^{2}+B^{2}} \\
&\left[\frac{B}{\sqrt{A^{2}+B^{2}}}\mathrm{cos}(\angle G(\mathrm{j}\omega_{\mathrm{i}})+\omega_{\mathrm{i}}t)+\frac{A}{\sqrt{A^{2}+B^{2}}}\mathrm{sin}(\angle G(\mathrm{j}\omega_{\mathrm{i}})+\omega_{\mathrm{i}}t)\right]
\end{aligned}
\]
代入