Linux进程概念

目录

冯诺依曼体系结构

操作系统

系统调用和库函数概念

进程

描述进程-PCB

组织进程

理解进程

查看进程

通过系统调用获取进程标示符

通过系统调用创建进程-fork

进程状态

进程状态查看

孤儿进程

进程优先级

查看系统进程

PRI and NI

PRI vs NI

用top命令更改已存在进程的nice

其他概念

环境变量

常见环境变量

查看环境变量方法

和环境变量相关的命令

环境变量的组织方式


冯诺依曼体系结构

我们常见的计算机,如笔记本。我们不常见的计算机,如服务器,大部分都遵守冯诺依曼体系,截至目前,我们所认识的计算机,都是有一个个的硬件组件组成。

  • 输入单元:包括键盘, 鼠标,扫描仪, 写板等
  • 中央处理器(CPU):含有运算器和控制器等
  • 输出单元:显示器,打印机等

关于冯诺依曼,必须强调几点:

  • 这里的存储器指的是内存
  • 不考虑缓存情况,这里的CPU能且只能对内存进行读写,不能访问外设(输入或输出设备)
  • 外设(输入或输出设备)要输入或者输出数据,也只能写入内存或者从内存中读取。
  • 一句话,所有设备都只能直接和内存打交道。

总结:

  • CPU读取数据(数据+代码),都是要从内存中读取。站在数据的角度,我们认为CPU不和外设直接交互。
  • cpu要处理数据,需要先将外设中的数据,加载到内存。站在数据的角度,外设直接只和内存打交道。
  • 程序要运行,必须先被加载到内存中,为什么?
  • 因为体系结构的特点决定的!

操作系统

任何计算机系统都包含一个基本的程序集合,称为操作系统(OS)。笼统的理解,操作系统包括:

  • 内核(进程管理,内存管理,文件管理,驱动管理)
  • 其他程序(例如函数库, shell程序等等)

设计OS的目的:

  • 与硬件交互,管理所有的软硬件资源
  • 为用户程序(应用程序)提供一个良好的执行环境

定位:

  • 在整个计算机软硬件架构中,操作系统的定位是: 一款纯正的“搞管理”的软件

如何理解 "管理":

  • 管理的例子
  • 描述被管理对象
  • 组织被管理对象

 

总结
计算机管理硬件

  • 1. 描述起来,用struct结构体
  • 2. 组织起来,用链表或其他高效的数据结构

系统调用和库函数概念

  • 在开发角度,操作系统对外会表现为一个整体,但是会暴露自己的部分接口,供上层开发使用,这部分由操作系统提供的接口,叫做系统调用。
  • 系统调用在使用上,功能比较基础,对用户的要求相对也比较高,所以,有心的开发者可以对部分系统调用进行适度封装,从而形成库,有了库,就很有利于更上层用户或者开发者进行二次开发

进程

  • 课本概念:程序的一个执行实例,正在执行的程序等
  • 内核观点:担当分配系统资源(CPU时间,内存)的实体

描述进程-PCB

  • 进程信息被放在一个叫做进程控制块的数据结构中,可以理解为进程属性的集合。
  • 课本上称之为PCB(process control block), Linux操作系统下的PCB是: task_struct

task_struct-PCB的一种

  • 在Linux中描述进程的结构体叫做task_struct。
  • task_struct是Linux内核的一种数据结构,它会被装载到RAM(内存)里并且包含着进程的信息。

task_ struct内容分类

  • 标示符: 描述本进程的唯一标示符,用来区别其他进程。
  • 状态: 任务状态,退出代码,退出信号等。
  • 优先级: 相对于其他进程的优先级。
  • 程序计数器: 程序中即将被执行的下一条指令的地址。
  • 内存指针: 包括程序代码和进程相关数据的指针,还有和其他进程共享的内存块的指针
  • 上下文数据: 进程执行时处理器的寄存器中的数据[休学例子,要加图CPU,寄存器]。
  • I/ O状态信息: 包括显示的I/O请求,分配给进程的I/ O设备和被进程使用的文件列表。
  • 记账信息: 可能包括处理器时间总和,使用的时钟数总和,时间限制,记账号等。
  • 其他信息

组织进程

可以在内核源代码里找到它。所有运行在系统里的进程都以task_struct链表的形式存在内核里。

理解进程

  • 其实,我们自已启动一个软件,本质其实就是启动了一个进程。
  • 在Linux在,运行一条命令,./XXX,运行的时候,其实就是在系统层面创建了一个进程。
  • Linux是可以同时加载多个程序的,Linux是可能同时存在大量的进程在系统中的(0S,内存)。
  • Linux系统要不要管理进程呢?必须的
  • Linux系统是如何管理大量的进程的呢?先描述,在组织
  • 所以就有了描述进程的PCB结构体
  • 对进程的管理,变成了对进程PCB结构体链表的增删改查、
  • 属性是数据吗?属性和程序内的代码和数据有关系吗?文件 =内容+属性
  • 什么叫做进程:进程=对应的代码和数据+进程对应的PCB结构体。 

查看进程

进程的信息可以通过 /proc 系统文件夹查看
如:要获取PID为1的进程信息,你需要查看 /proc/1 这个文件夹。


大多数进程信息同样可以使用top和ps这些用户级工具来获取 

通过系统调用获取进程标示符

  • 进程id(PID)
  • 父进程id(PPID)
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int main()
{
printf("pid: %d\n", getpid());
printf("ppid: %d\n", getppid());
return 0;
}

通过系统调用创建进程-fork

  • 运行man fork来认识fork
  • fork 有两个返回值
  • 父子进程代码共享,数据各自开辟一份空间,私有一份(采用写时拷贝) 
  • fork后通常要用 if 分流
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int main()
{int ret = fork();if(ret < 0){perror("fork");return 1;}else if(ret == 0){ //childprintf("I am child : %d!, ret: %d\n", getpid(), ret);}else{ //fatherprintf("I am father : %d!, ret: %d\n", getpid(), ret);}sleep(1);return 0;
}

进程状态

  • R 运行状态(running): 并不意味着进程一定在运行中,它表明进程不是在运行中就是在运行队列里
  • S 睡眠状态(sleeping):意味着进程在等待事件的完成(这里叫做可中断睡眠)
  • D 磁盘休眠状态(disk sleep):叫做不可中断睡眠,在这个状态下的进程通常会等待IO的结束
  • T 停止状态(stopped):可通过发送SIGSTOP 信号来停止 T 进程。这个被暂停的 T 进程可以通过发送SIGCONT信号让进程继续运行
  • X 死亡状态(dead) :这个状态只是一个返回状态,不会在任务列表中看到这个状态
  • Z 僵尸进程(zombie):当进程退出且父进程没有读取到子进程的退出码的时候就会出现,僵尸进程会以终止状态保存在进程表中,并且会一致等待父进程读取退出状态码。所以子进程退出,父进程还在运行,但父进程没有读取子进程的进程状态,子进程就会进入Z状态
  • 阻塞:等待非CPU资源就绪,阻塞状态
  • 挂起:当内存不足的时候,OS通过适当的置换进程的代码和数据到磁盘,进程的状态就叫做挂起

下面创建一个维持25s的僵尸进程:

#include <stdio.h>
#include <stdlib.h>
int main()
{pid_t id = fork();if(id < 0){perror("fork");return 1;}else if(id > 0){ //parentprintf("parent[%d] is sleeping...\n", getpid());sleep(30);}else{printf("child[%d] is begin Z...\n", getpid());sleep(5);exit(EXIT_SUCCESS);}return 0;
}

僵尸进程的危害:

  • 进程的退出状态必须被维持下去,因为他要告诉他的父进程,他交给子进程的任务完成的怎么样了。这样如果父进程一直不去读取子进程状态的话,那么子进程就会一直处于僵尸状态
  • 进程退出状态也需要用数据维护,也属于进程的基本信息,所以在task_struct(PCB)中,如果Z状态一直不结束,PCB就要一直进行维护
  • 所以如果一个父进程创建的很多子进程但是却不回收,就会造成资源的浪费,因为数据结构的对象本身就要占用内存
  • 综上僵尸进程会导致内存泄漏

进程状态查看

ps aux / ps axj 命令

孤儿进程

  • 父进程如果提前退出,那么子进程后退出,进入Z之后,那该如何处理呢?
  • 父进程先退出,子进程就称之为“孤儿进程”
  • 孤儿进程被1号init进程领养,当然要有init进程回收喽。
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
int main()
{pid_t id = fork();if (id < 0){perror("fork");return 1;}else if (id == 0){ // childprintf("I am child, pid : %d\n", getpid());sleep(10);}else{ // parentprintf("I am parent, pid: %d\n", getpid());sleep(3);exit(0);}return 0;
}

进程优先级

  • cpu资源分配的先后顺序,就是指进程的优先权(priority)。
  • 优先权高的进程有优先执行权利。配置进程优先权对多任务环境的linux很有用,可以改善系统性能。
  • 还可以把进程运行到指定的CPU上,这样一来,把不重要的进程安排到某个CPU,可以大大改善系统整体性能

查看系统进程

在linux或者unix系统中,用ps –l命令则会类似输出以下几个内容:


我们很容易注意到其中的几个重要信息,有下:

  • UID : 代表执行者的身份
  • PID : 代表这个进程的代号
  • PPID :代表这个进程是由哪个进程发展衍生而来的,亦即父进程的代号
  • PRI :代表这个进程可被执行的优先级,其值越小越早被执行
  • NI :代表这个进程的nice值

PRI and NI

  • PRI也还是比较好理解的,即进程的优先级,或者通俗点说就是程序被CPU执行的先后顺序,此值越小进程的优先级别越高
  • 那NI呢?就是我们所要说的nice值了,其表示进程可被执行的优先级的修正数值
  • PRI值越小越快被执行,那么加入nice值后,将会使得PRI变为: PRI(new)=PRI(old)+nice
  • 这样,当nice值为负值的时候,那么该程序将会优先级值将变小,即其优先级会变高,则其越快被执行
  • 所以,调整进程优先级,在Linux下,就是调整进程nice值
  • nice其取值范围是-20至19,一共40个级别。

PRI vs NI

  • 需要强调一点的是,进程的nice值不是进程的优先级,他们不是一个概念,但是进程nice值会影响到进程的优先级变化。
  • 可以理解nice值是进程优先级的修正修正数据

用top命令更改已存在进程的nice

  • top
  • 进入top后按“r”–>输入进程PID–>输入nice值

其他概念

  • 竞争性: 系统进程数目众多,而CPU资源只有少量,甚至1个,所以进程之间是具有竞争属性的。为了高效完成任务,更合理竞争相关资源,便具有了优先级
  • 独立性: 多进程运行,需要独享各种资源,多进程运行期间互不干扰
  • 并行: 多个进程在多个CPU下分别,同时进行运行,这称之为并行
  • 并发: 多个进程在一个CPU下采用进程切换的方式,在一段时间之内,让多个进程都得以推进,称之为并发

环境变量

  • 环境变量(environment variables)一般是指在操作系统中用来指定操作系统运行环境的一些参数
  • 如:我们在编写C/C++代码的时候,在链接的时候,从来不知道我们的所链接的动态静态库在哪里,但是照样可以链接成功,生成可执行程序,原因就是有相关环境变量帮助编译器进行查找。
  • 环境变量通常具有某些特殊用途,还有在系统当中通常具有全局特性

常见环境变量

  • PATH : 指定命令的搜索路径
  • HOME : 指定用户的主工作目录(即用户登陆到Linux系统中时,默认的目录)
  • SHELL : 当前Shell,它的值通常是/bin/bash。

查看环境变量方法

echo $NAME //NAME:你的环境变量名称

和环境变量相关的命令

  • 1. echo: 显示某个环境变量值
  • 2. export: 设置一个新的环境变量
  • 3. env: 显示所有环境变量
  • 4. unset: 清除环境变量
  • 5. set: 显示本地定义的shell变量和环境变量

环境变量的组织方式


每个程序都会收到一张环境表,环境表是一个字符指针数组,每个指针指向一个以’\0’结尾的环境字符串。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/8027.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

官宣 | 平行云正式升级为Paraverse平行云科技,开启全球业务新征程

6月30日, "Here is New-Gen Web"——Paraverse Global Strategy and Brand Launch Party 于香港科学园召开&#xff0c;会上平行云正式宣布升级为Paraverse平行云科技&#xff08;以下简称Paraverse)&#xff0c;并升级品牌标识“Paraverse”。这一全新命名与视觉焕新…

LabVIEW仿真单频脉冲信号+线性调频信号+高斯白噪声信号

文章目录 前言一、单频脉冲信号1、信号参数2、仿真图①、前面板②、程序框图 二、线性调频信号1、信号参数2、仿真图①、前面板②、程序框图 三、高斯白噪声信号1、信号参数2、仿真图①、前面板②、程序框图 四、合成信号1、前面板2、程序框图 五、代码自取 前言 本文基于 Lab…

day28-JSP

0目录 JSP 1.为什么使用JSP 2.B/S和C/S的区别 3.URL 4.Tomcat 5.JSP实战综合项目 1.为什么使用JSP 1.1 JSP定义&#xff1a; &#xff08;1&#xff09;是一种动态网页技术 &#xff08;2&#xff09;Java Server Pages&#xff08;Java服务器端页面技术&#xff09; 1.2 …

干货 | 石化产品机器学习价格模型开发和SEI石化产品价格分析体系构建

以下内容整理自大数据能力提升项目必修课《大数据系统基础》同学们的期末答辩汇报。 我们的报告将分为六个部分&#xff0c;第一部分是研究背景与内容。受疫情影响以来&#xff0c;石化行业市场日趋饱和&#xff0c;竞争激烈&#xff0c;同时利润也受到压缩&#xff0c;大部分石…

5G NR:RACH随机接入过程

1. 简述 无论是3G,4G还是现在的5G都需要随机接入过程&#xff0c;随机接入过程主要是为了让基站和UE之间做好上行同步以及初始接入。此文章仅仅帮助大家了解此过程&#xff0c;更加具体的用途及其场景需要参考具体的3GPP协议&#xff08;38.211,38.212,38.213).主要帮助理解如下…

【Spark实战】Windows环境下编译Spark2 Linux上部署Spark On Yarn

Windows环境下编译Spark2 环境准备 git-2.14.1maven-3.9.2jdk-1.8scala-2.11.8zinc-0.3.15 主下载地址spark-2.3.4 github官方地址 编译准备 maven远程仓库使用的是阿里云的 解压源码包spark-2.3.4.zip,修改根模块的pom文件。主要目的是为了变更hadoop的版本号&#xff0c;…

【数据可视化】大作业(意向考研高校的数据可视化)

文章目录 前言一、数据介绍1.1 基本信息1.2 考研信息1.3 导师信息 二、预处理及分析2.1 数据预处理2.1.1 考研信息预处理2.1.2 导师信息预处理 2.2 数据分析 三、可视化方法及结果3.1 可视化方法3.2 可视化结果展示3.2.1 基本信息3.2.2 考研信息3.2.3 导师信息 四、总结五、附录…

git 获取两个版本间的变更文件,生成增量包

可用于代码在无git环境情况下的做增量包 注意&#xff1a;版本号1一般是上一次版本的结束。 #下面命令可以获取两个版本直接的变更文件git diff 版本号1 版本号2 --name-only git diff 版本号1 版本号2 --name-only | xargs zip update.zip 牛逼之处就是打出来的压缩包是带…

89C52RC普中单片机-4

20230629 Thusday lcd1602代码 lcd1602.c #include <REGX52.H>//引脚配置&#xff1a; sbit LCD_RSP2^6; sbit LCD_RWP2^5; sbit LCD_ENP2^7; #define LCD_DataPort P0//函数定义&#xff1a; /*** brief LCD1602延时函数&#xff0c;12MHz调用可延时1ms* param 无*…

论文笔记--GPT-4 Technical Report

论文笔记--GPT-4 Technical Report 1. 报告简介2. 报告概括3 报告重点内容3.1 Predictable Scaling3.2 Capabilities3.3 limitations3.3 Risks & mitigations 4. 报告总结5. 报告传送门6. References 1. 报告简介 标题&#xff1a;GPT-4 Technical Report作者&#xff1a;…

uniapp怎么把px转换成对应手机型号的rpx

首先获取系统手机屏幕的宽度系统信息的概念 | uni-app官网&#xff0c;然后根据公式转换 rpx 750*元素 B 在设计稿上的宽度为 多少px/手机屏幕的宽度 详见&#xff1a;CSS 支持 | uni-app官网 如下为把宽度为1px的转成对应手机型号的rpx uni.getSystemInfo({success(res) {co…

LeetCode 打卡day54-55 动态规划之编辑距离问题

一个人的朝圣 — LeetCode打卡第54-55天 知识总结 Leetcode 392. 判断子序列题目说明代码说明 Leetcode 115. 不同的子序列题目说明代码说明 Leetcode 583. 两个字符串的删除操作题目说明代码说明 Leetcode 72. 编辑距离题目说明代码说明 知识总结 今天学习动态规划里面的编辑…