人工智能开发板 SE5 - MB1684开发入门指南 -- 模型转换、交叉编译、开发板运行 yolov5 目标追踪

介绍

我们属于SoC模式,即我们在x86主机上基于tpu-nntc和libsophon完成模型的编译量化与程序的交叉编译,部署时将编译好的程序拷贝至SoC平台(1684开发板/SE微服务器/SM模组)中执行。

注:以下都是在Ubuntu20.04系统上操作的,当然Ubuntu18和22也是可以的,因为我们主要是用的官方 docker 环境进行配置。

准备工作

安装docker

首先安装docker

# 更新一下库 
sudo apt-get update
sudo apt-gefat upgrade
# 安装 docker 
sudo apt-get install docker.io
# docker命令免root权限执行 
# 创建docker用户组,若已有docker组会报错,没关系可忽略
sudo groupadd docker  
# 将当前用户加入docker组
sudo gpasswd -a ${USER} docker 
# 重启docker服务 
sudo service docker restart  
# 切换当前会话到新group或重新登录重启X会话 
newgrp docker  

我已经装docker了,这一步没有测试,若有问题请问百度。

下载SDK

在算能官网上,资料下载里下载相关sdk:https://developer.sophgo.com/site/index/material/all/all.html

基础工具包包括:

  • tpu-nntc 负责对第三方深度学习框架下训练得到的神经网络模型进行离线编译和优化,生成最终运行时需要的BModel。目前支持Caffe、Darknet、MXNet、ONNX、PyTorch、PaddlePaddle、TensorFlow等。
  • libsophon 提供BMCV、BMRuntime、BMLib等库,用来驱动VPP、TPU等硬件,完成图像处理、张量运算、模型推理等操作,供用户进行深度学习应用开发。
  • sophon-mw 封装了BM-OpenCV、BM-FFmpeg等库,用来驱动VPU、JPU等硬件,支持RTSP流、GB28181流的解析,视频图像编解码加速等,供用户进行深度学习应用开发。
  • sophon-sail 提供了支持Python/C++的高级接口,是对BMRuntime、BMCV、BMDecoder、BMLib等底层库接口的封装,供用户进行深度学习应用开发。

可以下载这个SDK

image-20230419114430498

这里面包含了models里的所有代码,当然里面很多包是用不到的。

image-20230419114506989

也可以只下载我们需要的sdk

主要是这几个:

tpu-nntc

libsophon

sophon-mw

sophon-demo

sophon-img

sophon-sail

sophon-demo

分别wget 到本地就行,

# 先建个存放的路径
mkdir fugui
# 分别wget 到本地就行
wget https://sophon-file.sophon.cn/sophon-prod-s3/drive/22/11/28/10/libsophon_20221027_214818.zip   https://sophon-file.sophon.cn/sophon-prod-s3/drive/22/11/28/11/sophon-mw_20221027_183429.zip https://sophon-file.sophon.cn/sophon-prod-s3/drive/22/11/28/15/sophon-demo_20221027_181652.zip https://sophon-file.sophon.cn/sophon-prod-s3/drive/22/11/28/15/sophon-img_20221027_215835.zip https://sophon-file.sophon.cn/sophon-prod-s3/drive/22/11/28/15/sophon-sail_20221026_200216.zip https://sophon-file.sophon.cn/sophon-prod-s3/drive/22/11/28/15/sophon-demo_20221027_181652.zip

配置环境

装上解压缩工具

sudo apt-get install unzip

先把这几个压缩文件解压了

unzip \*.zip

创建docker容器:

#如果当前系统没有对应的镜像,会自动从docker hub上下载;此处将tpu-nntc的上一级目录映射到docker内的/workspace目录;这里用了8001到8001端口的映射(使用ufw可视化工具会用到端口号)。如果端口已被占用,请根据实际情况更换为其他未占用的端口。
:~/fugui# docker run -v $PWD/:/workspace  -it sophgo/tpuc_dev:latest

进入 tpu-nntc,解压缩包

root@39d67fa4c7bb:/workspace/fugui/tpu-nntc_20221028_200521# tar -zxvf  tpu-nntc_v3.1.3-242ef2f9-221028.tar.gz

进入tpu-nntc_v3.1.3-242ef2f9-221028 运行一下命令初始化软件环境

source scripts/envsetup.sh

image-20230419153738140

在下载tensorflow时比较慢,我们都是用pytorch,直接ctrl c跳过,不装他了。

yolov5

这里就不演示官方模型了,直接用我们自己训练的模型进行量化推理。

注意:这里必须用yolov5 v6.1版本

如何训练就不说了,参考:这篇文章

最好使用yolov5s训练,然后对训练后的模型进行转换。比如我训练的是安全帽检测,现在生成了best.pt这个权重文件,为了好区分我改名为anquanmao.pt

将他放在了yolov5的根目录下,然后修改了models文件下的yolo.py中的forward函数。将return x if self.training else (torch.cat(z, 1), x) 修改为:

return x if self.training else x

image-20230419155833459

然后运行

 python export.py --weight anquanmao.pt --include torchscript

这样生成了 anquanmao.torchscript 文件

image-20230419160201616

image-20230419160211412

打开这个权重文件看看是不是和我的一样,只要是yolov5 6.1就肯定一样。

修改 anquanmao.torchscriptanquanmao.torchscript.pt (就是在最后加个.pt)

然后将这个文件拷贝到你的x86服务器里,路径为:

/root/fugui/sophon-demo_20221027_181652/sophon-demo_v0.1.0_b909566_20221027/sample/YOLOv5/data

然后找些你训练的图片,也就是安全帽,200张左右就行

同样上传到那个文件夹里

image-20230419161259835

然后就可以进行模型转换了

# 先备份一下
root@39d67fa4c7bb:/workspace/fugui/sophon-demo_20221027_181652/sophon-demo_v0.1.0_b909566_20221027/sample/YOLOv5/scripts# cp 2_2_gen_int8bmodel.sh 3_2_gen_int8bmodel.sh 
vi cp 2_2_gen_int8bmodel.sh

然后修改里面内容,200太多了,转换起来太慢了,50就够了

image-20230419161524150

修改model_info.sh

root@39d67fa4c7bb:/workspace/fugui/sophon-demo_20221027_181652/sophon-demo_v0.1.0_b909566_20221027/sample/YOLOv5/scripts# vi model_info.sh 
echo "start fp32bmodel transform, platform: ${platform} ......"root_dir=$(cd `dirname $BASH_SOURCE[0]`/../ && pwd)
build_dir=$root_dir/build
# 将这里修改为我们刚才存放的.torchscript.pt文件地址
src_model_file=${root_dir}/data/anquanmao.1_3output.torchscript.pt
src_model_name=`basename ${src_model_file}`
# 这里也修改下吧 yolov5s ——> anquanmao
dst_model_prefix="anquanmao"
dst_model_postfix="coco_v6.1_3output"
fp32model_dir="${root_dir}/data/models/${platform}/fp32model"
int8model_dir="${root_dir}/data/models/${platform}/int8model"
lmdb_src_dir="${root_dir}/data/images"
# 这里修改为我们上传的图片地址
image_src_dir="${root_dir}/data/anquanmao"
# lmdb_src_dir="${build_dir}/coco2017val/coco/images/"
#lmdb_dst_dir="${build_dir}/lmdb/"
img_size=${2:-640}
batch_size=${3:-1}
iteration=${4:-2}
img_width=640
img_height=640

运行转换命令前需要加上权限,否则不能执行

root@39d67fa4c7bb:/workspace/fugui/sophon-demo_20221027_181652/sophon-demo_v0.1.0_b909566_20221027/sample/YOLOv5/scripts# sudo chmod 777 *

然后执行转int8bmodel模型,转FP32也一样

root@39d67fa4c7bb:/workspace/fugui/sophon-demo_20221027_181652/sophon-demo_v0.1.0_b909566_20221027/sample/YOLOv5/scripts# ./ 2_2_gen_int8bmodel.sh

性能不好的机器会非常慢,等待完成即可

编译yolov5 c++程序

/workspace/sophon-demo/sample/YOLOv5/cpp/yolov5_bmcv/build# 
cd cpp/deepsort_bmcv 
mkdir build && cd build	
# 请根据实际情况修改-DSDK的路径,需使用绝对路径 
cmake -DTARGET_ARCH=soc -DSDK=/workspace/soc-sdk .. 
make

复制到开发板

scp ../yolov5_bmcv.soc linaro@192.168.17.153:/data/sophon-demo/sample/YOLOv5/cpp/yolov5_bmcv

开发板运行

linaro@bm1684:/data/sophon-demo/sample/YOLOv5/cpp/yolov5_bmcv$ ./yolov5_bmcv_drawr.soc --input=rtsp://admin:sangfor@123@192.168.17.253 --bmodel=BM1684/yolov5s_v6.1_3output_int8_1b.bmodel

目标追踪

注:所有模型转换都是在docker环境中的

先进入docker

这里我们是要在docker环境里编译的,所以先进入docker

:~/tpu-nntc# docker run -v $PWD/:/workspace  -it sophgo/tpuc_dev:latest

初始化环境

root@2bb02a2e27d5:/workspace/tpu-nntc# source ./scripts/envsetup.sh

docker里安装编译器

root@2bb02a2e27d5:/workspace/sophon-demo/sample/YOLOv5/cpp/yolov5_bmcv/build# sudo apt-get install  gcc-aarch64-linux-gnu g++-aarch64-linux-gnu libeigen3-dev

本C++例程依赖Eigen,您需要在编译c++程序的机器上运行如下命令安装:

sudo apt install libeigen3-dev

先下载相关文件,主要是追踪的测试视频,测试图片,目标追踪的权重,目标检测的权重

# 安装unzip,若已安装请跳过
sudo apt install unzip
chmod -R +x scripts/
./scripts/download.sh

然后编译c++代码

/workspace/sophon-demo/sample/DeepSORT/cpp/deepsort_bmcv/build# 
cd cpp/deepsort_bmcv
mkdir build && cd build
# 请根据实际情况修改-DSDK的路径,需使用绝对路径。
cmake -DTARGET_ARCH=soc -DSDK=/workspace/soc-sdk ..  
make

这时会生成deepsort_bmcv.soc文件,复制到盒子里

:/workspace/sophon-demo/sample/DeepSORT/cpp/deepsort_bmcv# scp -r  deepsort_bmcv.soc linaro@192.168.17.125:/data/yolo/sophon-demo/sample/DeepSORT/cpp

测试视频

./deepsort_bmcv.soc --input=rtsp://admin:sangfor@123@192.168.17.253 --bmodel_detector=../../BM1684/yolov5s_v6.1_3output_int8_1b.bmodel --bmodel_extractor=../../BM1684/extractor_fp32_1b.bmodel --dev_id=0

运行相关代码,这个是检测图片的

cd python
python3 deepsort_opencv.py --input ../datasets/mot15_trainset/ADL-Rundle-6/img1 --bmodel_detector ../models/BM1684/yolov5s_v6.1_3output_int8_1b.bmodel --bmodel_extractor ../models/BM1684/extractor_fp32_1b.bmodel --dev_id=0

对视频追踪

python3 deepsort_opencv.py --input ../datasets/test_car_person_1080P.mp4 --bmodel_detector ../models/BM1684/yolov5s_v6.1_3output_int8_1b.bmodel --bmodel_extractor ../models/BM1684/extractor_fp32_1b.bmodel --dev_id=0

对本地摄像头视频追踪

python3 deepsort_opencv.py --input rtsp://admin:sangfor@123@192.168.17.253 --bmodel_detector ../models/BM1684/yolov5s_v6.1_3output_int8_1b.bmodel --bmodel_extractor ../models/BM1684/extractor_fp32_1b.bmodel --dev_id=0

人体姿态估计

python3 python/openpose_opencv.py --input rtsp://admin:sangfor@123@192.168.17.253 --bmodel models/BM1684/pose_coco_fp32_1b.bmodel --dev_id 0

生成的文件会放在sample/YOLOv5/data/models/BM1684/int8model/anquanmao_batch1

:~/fugui/sophon-demo_20221027_181652/sophon-demo_v0.1.0_b909566_20221027/sample/YOLOv5/data/models/BM1684/int8model/anquanmao_batch1# ls
compilation.bmodel  input_ref_data.dat  io_info.dat  output_ref_data.dat

然后将转换好的模型推送到开发板

scp compilation.bmodel linaro@{开发板ip地址}:/data/{你的yolov5存放路径}

开发板环境配置

搭建 libsophon 环境

cd libsophon_<date>_<hash>
# 安装依赖库,只需要执行一次
sudo apt install dkms libncurses5
sudo dpkg -i sophon-*.deb
# 在终端执行如下命令,或者log out再log in当前用户后即可使用bm-smi等命令
source /etc/profile

python3 yolov5_new_1.py --input rtsp://admin:1111111a@192.168.16.223 --bmodel yolov5s_v6.1_3output_fp32_1b.bmodel

c++编译环境

安装libsophon

进入sophon-img_20221027_215835这个路径

解压里面的tar包

:~/fugui/sophon-img_20221027_215835# tar -zxvf libsophon_soc_0.4.2_aarch64.tar.gz

将相关库目录和头文件目录拷贝到soc-sdk文件夹中

:~/fugui/sophon-img_20221027_215835/libsophon_soc_0.4.2_aarch64/opt/sophon/libsophon-0.4.2# sudo cp -rf include lib ~/fugui/soc-sdk

安装sophon-opencv 和sophon-ffmpeg

先进入sophon-mw,解压sophon-mw-soc_0.4.0_aarch64.tar.gz这个tar包

:~/fugui/sophon-mw_20221027_183429# tar -zxvf sophon-mw-soc_0.4.0_aarch64.tar.gz

复制相关文件到soc-sdk

:~/fugui/sophon-mw_20221027_183429/sophon-mw-soc_0.4.0_aarch64/opt/sophon# cp -rf sophon-ffmpeg_0.4.0//lib sophon-ffmpeg_0.4.0/include/ ~/fugui/soc-sdk:~/fugui/sophon-mw_20221027_183429/sophon-mw-soc_0.4.0_aarch64/opt/sophon# cp -rf sophon-opencv_0.4.0//lib sophon-opencv_0.4.0/include/ ~/fugui/soc-sdk

很简单,复制过去,交叉编译的环境就搭建好了

TPU-NNTC环境

这里我们是要在docker环境里编译的,所以先进入docker

:~/fugui# docker run -v $PWD/:/workspace  -it sophgo/tpuc_dev:latest

然后进入tpu-nntc,初始化环境

root@2bb02a2e27d5:/workspace/tpu-nntc# source ./scripts/envsetup.sh

docker里安装编译器

root@2bb02a2e27d5:/workspace/sophon-demo/sample/YOLOv5/cpp/yolov5_bmcv/build# sudo apt-get install gcc-aarch64-linux-gnu g++-aarch64-linux-gnu

进入sophon-demo路径

下载相关文件

:~/fugui/sophon-demo/sample/YOLOv5# chmod -R +x scripts/
:~/fugui/sophon-demo/sample/YOLOv5# ./scripts/download.sh

编译yolov5

我们这里只是交叉编译,不能在x86设备上运行,要复制到我们1684平台

先cmake

root@2bb02a2e27d5:/workspace/sophon-demo/sample/YOLOv5/cpp/yolov5_bmcv/build# cmake -DTARGET_ARCH=soc -DSDK=/workspace/soc-sdk ..

在make

root@2bb02a2e27d5:/workspace/sophon-demo/sample/YOLOv5/cpp/yolov5_bmcv/build# make

此时会出现.soc文件

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-eWPar5Yp-1692844732110)(https://gitee.com/lizheng0219/picgo_img/raw/master/img202325/image-20230421134631891.png)]

把输出的文件传导我们开发板上运行下

scp -r yolov5_bmcv linaro@192.168.17.125:/data/sophon-demo/sample/YOLOv5/cpp/

运行推理图片

./yolov5_bmcv.soc --input=../../coco128 --bmodel=../../python/yolov5s_v6.1_3output_fp32_1b.bmodel --dev_id=0 --conf_thresh=0.5 --nms_thresh=0.5 --classnames=../../coco.names 

推理视频

./yolov5_bmcv.soc --input=../../test.avi --bmodel=../../python/yolov5s_v6.1_3output_fp32_1b.bmodel --dev_id=0 --conf_thresh=0.5 --nms_thresh=0.5 --classnames=../../coco.names 

c++推理网络摄像头

./yolov5_bmcv.soc --input=rtsp://admin:sangfor@123@192.168.17.253 --bmodel=/data/ai_box/yolov5s_640_coco_v6.1_3output_int8_1b_BM1684.bmodel --dev_id=0 --conf_thresh=0.5 --nms_thresh=0.5 --classnames=../../coco.names
./yolov5_bmcv.soc --input=rtsp://admin:sangfor@123@192.168.17.253 --bmodel=/data/models/all16_v6.1_3output_int8_4b.bmodel --dev_id=0 --conf_thresh=0.5 --nms_thresh=0.5 --classnames=/data/models/all16.names

网络摄像头:安全帽

 ./yolov5_bmcv.soc  --bmodel=anquanmao.bmodel --dev_id=0 --conf_thresh=0.5 --nms_thresh=0.5 --classnames=../../coco.names 

Python推理

python3 yolov5_opencv.py --input rtsp://admin:1111111a@192.168.16.222  --bmodel ../yolov5s_v6.1_3output_int8_4b.bmodel

前端只展示一路摄像头,我们只需要做一路摄像头使用多个算法推理。

不展示的摄像头也要实时在后台推理,有出现问题时要及时报警。

这样我们需做出单路摄像头推理多算法(单摄像头单算法也行,把所有检测都放到一个模型里,输出时只输出他选择的那个)

把所有模型统一训练比较简单,后台一块推理

sophon-pipeline

本地编译

docker run -v $PWD/:/workspace -p 8001:8001 -it sophgo/tpuc_dev:latest
source scripts/envsetup.sh
sudo apt-get install -y  gcc-aarch64-linux-gnu g++-aarch64-linux-gnu libeigen3-dev
./tools/compile.sh soc /workspace/soc-sdk

开发板运行

linaro@bm1684:/data/sophon-pipeline/release/video_stitch_demo$ ./soc/video_stitch_demo --config=cameras_video_stitch1.json

英码

export PYTHONPATH=$PYTHONPATH:/system/libexport
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/system/lib/

python

pip3 install sophon_arm-master-py3-none-any.whl --force-reinstall 
pip3 install opencv-python-headless<4.3

开发板执行命令

python3 python/yolov5_opencv.py --input ../data/images/coco200/000000009772.jpg  --model  ../compilation.bmodel --dev_id 0 --conf_thresh 0.5 --nms_thresh 0.5 
python3 python/yolov5_opencv.py --input ../data/xiyanimg/000017.jpg  --model  ../compilation.bmodel --dev_id 0 --conf_thresh 0.5 --nms_thresh 0.5
python3 python/yolov5_video.py --input rtsp://admin:sangfor@123@192.168.17.253 --model  ../compilation.bmodel

image-20230418164224531

python3 python/yolov5_video.py --input rtsp://admin:1111111a@192.168.16.222  --model  ../compilation.bmodel --dev_id 0 --conf_thresh 0.5 --nms_thresh 0.5 
tar -zxf ~/Release_221201-public/sophon-mw_20221227_040823/sophon-mw-soc_*_aarch64.tar.gz

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/81801.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何提供一个可信的AB测试解决方案

本文以履约场景下的具体实践为背景&#xff0c;介绍如何提供一个可信赖的AB测试解决方案。一方面从实验方法的角度论述实验过程中容易被忽视的统计陷阱&#xff0c;给出具体的解决方案&#xff0c;一方面从平台建设角度论述针对业务场景和对应约束制定实验方案提供给用户&#…

docker安装clickhouse

安装 docker安装 创建clickhouse目录 mkdir -P /data/clickhouse/datamkdir -P /data/clickhouse/confmkdir -P /data/clickhouse/log 拉取镜像 这里直接拉取最新镜像, 如果需要某个特定版本, 则再拉取的时候指定版本号即可. docker pull clickhouse/clickhouse-server 启动临…

【安全】原型链污染 - Hackit2018

目录 准备工作 解题 代码审计 Payload 准备工作 将这道题所需依赖模块都安装好后 运行一下&#xff0c;然后可以试着访问一下&#xff0c;报错是因为里面没内容而已&#xff0c;不影响,准备工作就做好了 解题 代码审计 const express require(express) var hbs require…

QT6串口模块QSerialport的安装,主要是“编译器”版本问题

参考文档 https://blog.csdn.net/lidandan2016/article/details/85929069 https://blog.csdn.net/qq_42968012/article/details/126020554 https://blog.csdn.net/weixin_48467622/article/details/119982667 整体测试解决步骤总结 首先&#xff0c;QT6都不能进行离线安装&a…

SpringBoot概述SpringBoot基础配置yml的使用多环境启动

&#x1f40c;个人主页&#xff1a; &#x1f40c; 叶落闲庭 &#x1f4a8;我的专栏&#xff1a;&#x1f4a8; c语言 数据结构 javaEE 操作系统 石可破也&#xff0c;而不可夺坚&#xff1b;丹可磨也&#xff0c;而不可夺赤。 SpringBoot简介 一、 SpringBoot概述1.1 起步依赖…

总结:Git 撤销操作

1、还未添加到暂存区&#xff1a;git checkout -- filename 执行命令后&#xff0c;会回退到未修改之前的状态 2、已经添加到暂存区&#xff1a;git reset HEAD filename 执行命令后&#xff0c;会回退到工作区之前的状态 3、已经 commit&#xff0c;但是还未 push git reset…

缓存的设计方式

问题情况&#xff1a; 当有大量的请求到内部系统时&#xff0c;若每一个请求都需要我们操作数据库&#xff0c;例如查询操作&#xff0c;那么对于那种数据基本不怎么变动的数据来说&#xff0c;每一次都去数据库里面查询&#xff0c;是很消耗我们的性能 尤其是对于在海量数据…

Spring Boot(Vue3+ElementPlus+Axios+MyBatisPlus+Spring Boot 前后端分离)【一】

&#x1f600;前言 本篇博文是关于Spring Boot(Vue3ElementPlusAxiosMyBatisPlusSpring Boot 前后端分离)【一】&#xff0c;希望你能够喜欢 &#x1f3e0;个人主页&#xff1a;晨犀主页 &#x1f9d1;个人简介&#xff1a;大家好&#xff0c;我是晨犀&#xff0c;希望我的文章…

bh002- Blazor hybrid / Maui 保存设置快速教程

1. 建立工程 bh002_ORM 源码 2. 添加 nuget 包 <PackageReference Include"BootstrapBlazor.WebAPI" Version"7.*" /> <PackageReference Include"FreeSql" Version"*" /> <PackageReference Include"FreeSql.…

机器视觉工程师,2023年最大忠告,没实力,别辞职

最近很多粉丝频繁联系我&#xff0c;太难了&#xff0c;想辞职&#xff0c;干不下去&#xff0c;想要要辞职。 我会慢慢和他分析他当前的优势和劣势&#xff0c;从目前掌握各家公司招聘的信息来看&#xff0c;分以下几种情况&#xff1a; 第一&#xff1a;员工流动性大的公司&…

结构体指针和结构体数组指针

结构体指针和结构体数组指针是不同的类型。 结构体指针定义&#xff1a;Student *stu 结构体指针的步长是一个结构体的大小&#xff1b; 结构体数组指针定义&#xff1a;Student (*stu)[] 结构体数组指针的步长是整个结构体数组的大小。 例程&#xff1a; #include <stdio…

https非对称加密算法

非对称加密算法原理 在客户端公开公钥&#xff0c;服务端保存私钥 1.客户端第一次请求先请求443端口&#xff0c;从443端口下载公钥。 2.客户端将数据进行公钥算法进行加密&#xff0c;将秘文发送到服务端 服务端收到秘文后&#xff0c;通过私钥算法进行解密得到明文数据。…