题目 表达式\[\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}\]的值为
$\textbf{(A) } 28 \qquad \textbf{(B) } 68 \qquad \textbf{(C) } 70 \qquad \textbf{(D) } 72 \qquad \textbf{(E) } 84$
解 注意到表达式可以因式分解为$\left(\tan^2 \dfrac {\pi}{16}+\tan^2 \dfrac {7\pi}{16}\right)\left(\tan^2 \dfrac {3\pi}{16}+\tan^2 \dfrac {5\pi}{16}\right),$ 而\begin{align*}&\tan^2 x+\tan^2 \left(\dfrac{\pi }{2}-x\right)=\dfrac{\sin^2x}{\cos^2x}+\dfrac{\cos^2x}{\sin^2x}=\dfrac{\sin^4x+\cos^4x}{\sin^2x\cos^2x}\\=&\dfrac{(\sin^2x+\cos^2x)^2-2\sin^2x\cos^2x}{\sin^2x\cos^2x}=\dfrac{4}{\sin^22x}-2=\dfrac{8}{1-\cos4x}-2. \end{align*}因此$\tan^2 \dfrac {\pi}{16}+\tan^2 \dfrac {7\pi}{16}=\dfrac{8}{1-\cos\frac{\pi}{4}}-2=14+8\sqrt2,$ $\tan^2 \dfrac {3\pi}{16}+\tan^2 \dfrac {5\pi}{16}=\dfrac{8}{1-\cos\frac{3\pi}{4}}-2=14-8\sqrt2,$ 因此原表达式的值为$(14+8\sqrt2)\times(14-8\sqrt2)=68.$ 选$\textbf{(B) }.$