【C++杂货铺】探索vector的底层实现

在这里插入图片描述

文章目录

  • 一、STL
    • 1.1 什么是STL?
    • 1.2 STL的版本
    • 1.3 STL的六大组件
  • 二、vector的介绍及使用
    • 2.1 vector的介绍
    • 2.2 vector的使用
      • 2.2.1 vector的定义
      • 2.2.2 vector iterator
      • 2.2.3 vector空间增长问题
      • 2.2.4 vector增删查改
    • 2.3 vector\<char\> 可以替代 string 嘛?
  • 三、vector模拟实现
    • 3.1 成员变量
    • 3.2 成员函数
      • 3.2.1 构造函数
      • 3.2.2 拷贝构造
      • 3.2.3 operator=
      • 3.2.4 size
      • 3.2.5 capacity
      • 3.3.6 迭代器相关
      • 3.2.7 reserve(深拷贝问题)
      • 3.2.8 resize
      • 3.2.9 operator[ ]
      • 3.2.10 insert(迭代器失效问题)
      • 3.2.11 erase(迭代器失效问题)
      • 3.2.12 pop_back
  • 四、结语

一、STL

1.1 什么是STL?

STL(standard template libaray-标准模板库):是C++标准库的一部分,不仅是一个可复用的组件库,而且是一个包罗数据结构与算法的软件框架

在这里插入图片描述

1.2 STL的版本

  • 原始版本:Alexander Stepanov、Meng Lee在惠普实验室完成的版本,本着开源精神,它们声明允许任何人任意运用、拷贝、修改、传播、商业使用这些代码,无需付费。唯一的条件就是也需要像原始版本一样做开源使用。HP版本是所有STL的祖先。

  • P.J版本:由P. J. Plauger开发,继承自HP版本,被微软(Windows Visual C++)采用,不能公开或修改,缺陷:可读性比较低,符号命名比较怪异。

  • RW版本:由Rouge Wage公司开发,继承自HP版本。被C++Builder采用,不能公开或修改,可读性一般。

  • SGI版本:由Silicon Graphics Computer Systems,Inc公司开发,继承自HP版本。被GCC(Linux)采用,可移植性好,可公开、修改甚至贩卖,从命名风格和编程风格上看,阅读性非常高。建议大家在学习STL的过程中,可以参考这个版本的源代码。

1.3 STL的六大组件

在这里插入图片描述

二、vector的介绍及使用

2.1 vector的介绍

  • vector 是表示可变大小数组序列容器。

  • 就像数组一样,vector 也采用连续的存储空间来存储元素。也就意味着可以采用小标对 vector 的元素进行访问,和数组处理一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。

  • 本质讲,vector 使用动态分配数组来存储它的元素。当新元素插入时,为了增加存储空间,这个数组需要被重新分配大小。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价较高的任务,因为每当一个新的元素加入到容器的时候,vector 并不会每次都重新分配大小。

  • vector 分配空间策略:vector 会分配一些额外的空间以适应可能的增长,因此存储空间(容量)比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候实在常数时间复杂度完成的。

  • 因此,vector 占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。

  • 与其它的动态序列容器相比(如:deque、list、forward_list),vector 在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率会比较低。

2.2 vector的使用

vector 学习时一定要学会查看文档:vector的文档介绍,vector 在实际中非常重要,在实际中我们熟悉常用的接口就可以,下面列出了需要我们重点掌握的接口。

2.2.1 vector的定义

构造函数声明接口说明
vector()无参构造
vector(size_type n, const value_type& val = value_type())构造并初始化 n 个 val
vector(const vector& x)拷贝构造
vector(Inputlterator first, Inputiterator last)使用迭代器区间进行初始化构造

小Tips:size_type 表示一个无符号整数类型,value_type 是第一个模板参数,也就是要存储的数据类型。使用迭代器区间的构造函数是函数模板,只要是满足 Input 类型的迭代器都可以使用该构造函数。

int TestVector1()
{vector<int> first;                                vector<int> second(4, 100);                       vector<int> third(second.begin(), second.end());  vector<int> fourth(third);                       int myints[] = { 16,2,77,29 };vector<int> fifth(myints, myints + sizeof(myints) / sizeof(int));cout << "The contents of fifth are:";for (vector<int>::iterator it = fifth.begin(); it != fifth.end(); ++it)cout << ' ' << *it;cout << '\n';return 0;
}

2.2.2 vector iterator

iterator的使用接口说明
begin + end获取第一个数据位置的 iterator / const_iterator,获取最后一个数据下一个位置的iterator / const_iterator
rbegin + rend获取最后一个数据位置的 reverse_iterator,获取第一个数据前一个位置的 reverse_iterator

在这里插入图片描述

void PrintVector(const vector<int>& v)
{// const对象使用const迭代器进行遍历打印vector<int>::const_iterator it = v.begin();while (it != v.end()){cout << *it << " ";++it;}cout << endl;
}

2.2.3 vector空间增长问题

容量空间接口说明
size()获取数据个数
capacity()获取容量大小
empty()判断是否为空
resize(size_type n); resize (size_type n, const value_type& val)改变 vector 的 size
reserve(size_type n)改变 vector 的 capacity
  • vs 和 g++ 的扩容机制有所不同,vs 下 capacity 是按照 1.5 倍增长的,g++ 是按照 2 倍增长的。vs 是 PJ 版本 STL,g++ 是 SGI 版本 STL。

  • reserve 只负责开辟空间,如果确定知道需要多少空间,reserve 可以缓解 vector 增容的代价缺陷问题。

  • resize 在开空间的同时还会进行初始化,影响 成员变量 _size。

void TestVectorExpand()
{size_t sz;vector<int> v;sz = v.capacity();cout << "making v grow:\n";for (int i = 0; i < 100; ++i){v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}

VS 下的结果:
在这里插入图片描述
Linux 下的结果:
在这里插入图片描述
小Tips:如果已经确定 vector 中要存储元素的大概个数,可以提前将空间设置足够,就可以避免边插入边扩容导致效率低下的问题。

void TestVectorExpandOP()
{vector<int> v;size_t sz = v.capacity();v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容cout << "making bar grow:\n";for (int i = 0; i < 100; ++i){v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}

2.2.4 vector增删查改

vector 增删查改接口说明
push_back尾插
pop_back尾删
find查找(这个是算法模块实现,不是 vector 的成员接口)
insert在 position 之前插入 val
erase删除 position 位置的数据
swap交换两个 vector 的数据空间
operator[ ]像数组一样访问,通过断言来检查,而 at 是通过抛异常
//经典的错误
void Testerro()
{vector<int> v1;v1.reserve(10);for (size_t i = 0; i < 10; i++){v1[i] = i;}
}

注意:上面的代码虽然给 v1 提前开了 10 个空间,但是 v1 中的有效元素个数还是 0,即 v1.size() 的返回值是0,这样一来我们就不能直接通过下标去访问 vector 对象中的每一个元素,因为 operator[ ] 实现中的第一步就是检查下标的合理性,防止越界访问,执行 assert(pos < _size),而此时 _size 是 0,就会出错。上面的代码只需要把 reserve 改成 resize 就可以正常运行,因为 resize 会改变 _size 的大小。如果硬要使用 reserve 提前开空间,那么接下来要使用 push_back 来插入数据。

2.3 vector<char> 可以替代 string 嘛?

答案是不可以,虽然他们俩的底层本质上都是动态增长的数组,但是 string 字符串的结尾默认有 \0,可以更好的兼容 C 接口,而 vector<char> 的结尾默认是没有 \0 的,需要我们自己插入。

三、vector模拟实现

在这里插入图片描述

3.1 成员变量

public:typedef T* iterator;typedef const T* const_iterator;
private:iterator _start;iterator _finish;iterator _end_of_storage;

3.2 成员函数

3.2.1 构造函数

vector():_start(nullptr), _finish(nullptr),_end_of_storage(nullptr)
{}vector(size_t n, const T& val = T()):_start(nullptr), _finish(nullptr), _end_of_storage(nullptr)
{resize(n, val);
}vector(int n, const T& val = T()):_start(nullptr), _finish(nullptr), _end_of_storage(nullptr)
{resize(n, val);
}//迭代器区间初始化
template<class InputIterator>
vector(InputIterator first, InputIterator last)
{while (first != last){push_back(*first);first++;}
}

小Tips:迭代器区间初始化采用的是函数模板,因为它可能使用不同类型的迭代器。其次需要单独提供一个 vector(int n, const T& val = T()),因为迭代器区间初始化采用的是函数模板,如果不单独提供这种构造函数的话,vector<int> v1(10, 1) 这种情况会去走最匹配的,即和迭代器区间初始化函数匹配,而我们希望它走 vector(size_t n, const T& val = T()) 构造函数,但是 10 会被当做 int 型,和 size_t 匹配不上,因此就会去和迭代器区间初始化函数进行匹配,InputIterator 就会被实例化成 int 型,函数中会对 int 型解引用,就会报错,其次逻辑也不符。因此需要针对 int 单独提供一个构造函数。

3.2.2 拷贝构造

//方案一
vector(const vector<T>& V):_start(nullptr), _finish(nullptr), _end_of_storage(nullptr)
{iterator tmp = new T[V.capacity()];//memcpy(tmp, V._start, sizeof(T) * V.size());for (size_t i = 0; i < V.size(); i++){tmp[i] = V._start[i];}_start = tmp;_finish = _start + V.size();_end_of_storage = _start + V.capacity();
}//方案二
vector(const vector<T>& V):_start(nullptr), _finish(nullptr), _end_of_storage(nullptr)
{reserve(V.capacity());for (auto e : V){push_back(e);}
}

小Tips:这里设计深拷贝问题,在下文的 reserve 中会提到。

3.2.3 operator=

void swap(vector<T> v)
{std::swap(v._start, _start);std::swap(v._finish, _finish);std::swap(v._end_of_storage, _end_of_storage);
}vector<T>& operator=(vector<T> v)//调用拷贝构造函数
{swap(v);return *this;
}

3.2.4 size

size_t size() const
{return _finish - _start;
}

3.2.5 capacity

size_t capacity() const
{return _end_of_storage - _start;
}

3.3.6 迭代器相关

iterator begin()
{return _start;
}iterator end()
{return _finish;
}const_iterator begin() const
{return _start;
}const_iterator end() const
{return _finish;
}

3.2.7 reserve(深拷贝问题)

void reserve(size_t new_capacity)
{if (new_capacity > capacity()){iterator tmp = new T[new_capacity];if (_start)//如果原来的_start申请过空间,要先将源空间中的内容拷贝过来{memcpy(tmp, _start, sizeof(T)*size());delete[] _start;}size_t vsize = size();_start = tmp;_finish = tmp + vsize;//记得更新_finish_end_of_storage = _start + new_capacity;}
}

注意:这里需要更新 _finish 和 _end_ofstorage,因为他俩表示的是位置。要更新 _finish,首先要将 size() 保存一下,因为更新 _start 后,_start 指向新空间的开头,而 _finish 指向旧空间的结尾,此时去调用 size(),计算出来的个数是有问题的,因此需要再更新 _start 之前就将原来的元素个数,即 size() 保存一份。

小Tips:上面这种扩容逻辑,当 T 是内置类或者是无需进行深拷贝的自定义类型来说,是完全满足的。但是当 T 是需要进行深拷贝的内置类型时,上面这种扩容方式就会出现大问题。以 vector<string> 为例,即当 T 是 string 的时候。

在这里插入图片描述
如上图所示,如果简单的用 memcpy 将旧空间的数据拷贝到新空间,那么新旧空间中存储的 string 对象指向同一个堆区上的字符串,接着在执行 delete[] _start; 销毁旧空间的时候,由于该 _start 是一个 string* 的指针,所以会先调用 string 的析构函数,将对象中申请的空间释放,即释放 _str 指向的空间,接着再去调用 operator delete 函数释放 string 对象的空间。这样一来,新空间中存储的 string 对象就有问题了,它们的成员变量 _str 指向的空间已经被释放了。这里的问题就出在 memcpy 执行的是浅拷贝。我们可以对上述代码稍作修改即可:

void reserve(size_t new_capacity)
{if (new_capacity > capacity()){iterator tmp = new T[new_capacity];if (_start)//如果原来的_start申请过空间,要先将源空间中的内容拷贝过来{//memcpy(tmp, _start, sizeof(T)*size());for (size_t i = 0; i < size(); i++){tmp[i] = _start[i];}delete[] _start;}size_t vsize = size();_start = tmp;_finish = tmp + vsize;//记得更新_finish_end_of_storage = _start + new_capacity;}
}

修改后执行tmp[i] = _start[i]; 会去调用 string 对象的赋值运算重载,进行深拷贝。

3.2.8 resize

void resize(size_t n, const T& val = T())//缺省参数给的是一个匿名对象
{if (n > size()){//检查容量,扩容if (n > capacity()){reserve(n);}//开始填数iterator it = end();while (it < _start + n){*it = val;it++;}}_finish = _start + n;
}

3.2.9 operator[ ]

T& operator[](size_t pos)//读写版本
{assert(pos < size());return _start[pos];
}const T& operator[](size_t pos) const//只读版本
{assert(pos < size());return _start[pos];
}

3.2.10 insert(迭代器失效问题)

iterator insert(iterator pos, const T& val)
{assert(pos >= _start && pos <= _finish);size_t rpos = pos - _start;//保存一下pos的相对位置//检查容量if (_finish + 1 >= _end_of_storage){size_t old_capacity = capacity();reserve(old_capacity == 0 ? 4 : old_capacity * 2);}pos = _start + rpos;//更新pos//插入数据iterator end = _finish - 1;while (end >= pos){*(end + 1) = *end;end--;}*pos = val;_finish++;return pos;
}

注意:在进行 insert 的时候,会引发一个著名的问题——迭代器失效。我们希望在 pos 位置插入一个数据,pos 是一个迭代器。在插入数据之前要先检查容量,进行扩容,如果执行了扩容逻辑,_start、_finish、_end_of_storage 都指向了新空间,旧空间已经被释放了,而 pos 指向的还是原来空间中的某个位置,此时 pos 就变成了野指针,再去 pos 指向的位置填入数据,就会造成非法访问。为了避免这个问题,我们可以先保存一下 pos 的相对位置,扩完容之后再去更新 pos。

在这里插入图片描述
小Tips:保存相对位置更新 pos,是 insert 函数内部的解决方式,由于是传值传参,形参的 pos 更新,并不会改变实参的 pos,因此为了解决外部的迭代器失效问题,这里采用返回值的方式,将更新后的 pos 返回。可能会有小伙伴觉得,直接把形参的 pos 变成引用不香嘛?这样对形参的更新就相当于是对实参的更新。想法很好,但是不现实,因为实参很有可能具有常性,例如实参如果用 begin()、end(),他俩都是传值返回,会产生一个临时变量,该临时变量具有常性,如果形参 pos 用引用的话,就需要加 const 进行修饰,但是!但是!!如果用 const 进行修饰,那在函数内部就不能对 pos 进行更新。因此形参 pos 不能用引用。

总结:会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resize、reserve、insert、assign、
push_back等。

3.2.11 erase(迭代器失效问题)

iterator erase(iterator pos)
{assert(pos >= _start && pos <= _finish);iterator cur = pos + 1;while (cur != _finish){*(cur - 1) = *cur;cur++;}_finish--;return pos;
}

注意:erase 删除 pos 位置元素后,pos 位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代器不应该会失效,但是:如果 pos 刚好是最后一个元素,删完之后 pos 刚好是 _finish 的位置,而 _finish 位置是没有元素的,那么 pos 就失效了。因此,删除 vector 中任意位置上的元素时,VS 就认为该迭代器失效了(VS 是通过自己重写的 iterator 进行强制检查)。Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端。为了解决外部的迭代器失效问题,这里还是采用返回值的方式,返回 pos 下一个位置元素的迭代器。

3.2.12 pop_back

//直接复用即可
void pop_back()
{erase(--end());
}

四、结语

今天的分享到这里就结束啦!如果觉得文章还不错的话,可以三连支持一下,春人的主页还有很多有趣的文章,欢迎小伙伴们前去点评,您的支持就是春人前进的动力!

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/83797.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker容器:本地私有仓库、harbor私有仓库部署与管理

文章目录 一.本地私有仓库1.本地私有仓库概述2.搭建本地私有仓库3.容器重启策略简介 二.harbor私有仓库部署与管理1.什么是harbor2.Harbor的特性3、Harbor的构成4.Harbor私有仓库架构及数据流向5.harbor部署及配置&#xff08;192.168.198.11&#xff09;&#xff08;1&#xf…

RT-Thread内核学习

内核框架 内核是操作系统最基础也是最重要的部分&#xff0c;内核处于硬件层之上&#xff0c;内核部分包括内核库、实时内核实现。 内核库是为了保证内核能够独立运行的一套小型的类似C库的函数实现子集。这部分根据编译器不同自带C库的情况也会不同。 当使用GNU GCC编译器时&…

自己实现 SpringMVC 底层机制 系列之-实现任务阶段 6-完成控制器方法获取参数-@RequestParam

&#x1f600;前言 自己实现 SpringMVC 底层机制 系列之-实现任务阶段 6-完成控制器方法获取参数-RequestParam &#x1f3e0;个人主页&#xff1a;尘觉主页 &#x1f9d1;个人简介&#xff1a;大家好&#xff0c;我是尘觉&#xff0c;希望我的文章可以帮助到大家&#xff0c…

python爬虫的js逆向入门到进阶教程文章分享汇总~持续更新

目录 一、内容介绍二 、专栏内容-持续更新1、JS逆向入门2、Js逆向进阶3、爬虫基础知识4、工具与安装5、漫星内容分享 三、星球使用四、b站up主视频推荐 一、内容介绍 二 、专栏内容-持续更新 1、JS逆向入门 2023-08-25》11.常见加密>xx音乐RSA加密 https://articles.zsxq.c…

微信小程序开发教学系列(4)- 数据绑定与事件处理

4. 数据绑定与事件处理 在微信小程序中&#xff0c;数据绑定和事件处理是非常重要的部分。数据绑定可以将数据和页面元素进行关联&#xff0c;实现数据的动态渲染&#xff1b;事件处理则是响应用户的操作&#xff0c;实现交互功能。本章节将详细介绍数据绑定和事件处理的基本原…

STM32--SPI通信与W25Q64(1)

文章目录 前言SPI通信硬件电路移位过程 SPI时序起始与终止条件交换一个字节 W25Q64硬件电路框图 FLASH操作注意事项软件SPI读写W25Q64 前言 USART串口链接入口 I2C通信链接入口 SPI通信 SPI&#xff08;Serial Peripheral Interface&#xff09;是一种高速的、全双工、同步的串…

C#__自定义类传输数据和前台线程和后台线程

// 前台线程和后台线程 // 默认情况下&#xff0c;用Thread类创建的线程是前台线程。线程池中的线程总是后台线程。 // 用Thread类创建线程的时候&#xff0c;可以设置IsBackground属性&#xff0c;表示一个后台线程。 // 前台线程在主函数运行结束后依旧执行&#xff0c;后台线…

用 Audacity 比较两段音频差异

工作中遇到相同的处理流程&#xff0c;处理同一段音频&#xff0c;看看处理结果是否一致&#xff0c;可以用audacity来处理。 假设待比较的音频分别为 1.wav 2.wav 1、用Audacity打开1.wav 2、用Audacity打开2.wav&#xff0c;选中音频&#xff0c;然后用 效果 -> 反向&am…

弯道超车必做好题集锦二(C语言选择题)

前言&#xff1a; 编程想要学的好&#xff0c;刷题少不了&#xff0c;我们不仅要多刷题&#xff0c;还要刷好题&#xff01;为此我开启了一个弯道超车必做好题锦集的系列&#xff0c;每篇大约10题左右。此为第二篇选择题篇&#xff0c;该系列会不定期更新&#xff0c;后续还会…

解决idea登录github copilot报错问题

试了好多方案都没用&#xff0c;但是这个有用&#xff0c; 打开idea-help-edit custonm vm options 然后在这个文件里面输入 -Dcopilot.agent.disabledtrue再打开 https://github.com/settings/copilot 把这个设置成allow&#xff0c;然后重新尝试登录copilot就行就行 解决方…

智慧课堂学生行为检测评估算法

智慧课堂学生行为检测评估算法通过yolov5系列图像识别和行为分析&#xff0c;智慧课堂学生行为检测评估算法评估学生的表情、是否交头接耳行为、课堂参与度以及互动质量&#xff0c;并提供相应的反馈和建议。智慧课堂学生行为检测评估算法能够实时监测学生的上课行为&#xff0…

Linux TCP协议——三次握手,四次挥手

一、TCP协议介绍 TCP协议是可靠的、面向连接的、基于字节流的传输层通信协议。 TCP的头部结构&#xff1a; 源/目的端口号: 表示数据是从哪个进程来, 到哪个进程去;&#xff08;tcp是传输层的协议&#xff0c;端与端之间的数据传输&#xff0c;在TCP和UDP协议当中不会体现出I…