谷歌面试-扔鸡蛋

今天想跟大家分享一个有意思的面试题,这让我再一次感叹思维的奇妙,接下来我们一起看看吧~

首先来看看题目:

你有2颗鸡蛋,需要以最少的尝试次数来判断在100层的高楼上,哪一层楼是鸡蛋的安全层。

换句话说,就是需要确定我们从哪一层楼扔鸡蛋下去,鸡蛋恰好不会摔碎。高于安全层鸡蛋都会碎,低于安全层都不会碎。比如鸡蛋在第1层没有摔碎,在第2层摔碎了,那么鸡蛋的安全层就是第1层。

这里有几个假设条件:

  1. 没有摔碎的鸡蛋可以重复使用;

  2. 每颗鸡蛋的坚硬程度都是相同的。

在这里插入图片描述

这道题乍一看挺简单的,但其实解答相对复杂,而且解法多种多样,要在面试时逻辑清楚地表达完整思路,不仅要求面试者的知识储备要广、反应能力要快,逻辑思维和语言表达能力也是必不可少的。

成为经典可谓当之无愧。

解法1:简单粗暴

我们先来个最省事儿的方法:假设我们只有一颗鸡蛋,显然只有从一楼开始扔,逐层试探,直到鸡蛋摔碎,安全层就是第N-1层。

但是缺点想必大家也看出来了,这是拼运气啊,最坏情况需要扔100次。

用一颗鸡蛋的方法虽然简单粗暴,但也是给两颗鸡蛋的情况缕清一些思路。

简单写一下如何实现:

// 假设arr表示100层楼,每层楼鸡蛋会不会碎,如果arr[i] === 1 表示i层楼的鸡蛋会碎,arr[i] === 0表示第i层楼的鸡蛋不会碎// 简单暴力
const throwEggs1 = (arr) => {for(let i = 1; i <= 100; i++) {if (arr[i] === 1) {return i}}
}

解法2:常规二分

有两颗鸡蛋,二分法想必是大多数同学脑海里浮现的第一个念头吧?

我们先从50楼扔一颗鸡蛋,如果没碎,就往上继续二分,到75楼继续扔······

这是比较顺利的情况,如果不顺利呢,比如我们从50楼扔鸡蛋,直接碎了,那就只有一颗鸡蛋了。

这时候我们就回到解法1了,只能从1楼开始遍历,又是拼运气的时候了,要是运气好,1楼鸡蛋就没了,那测试次数就是1+1=2次,但最坏情况就是1+49=50次。

这么多次,显然是不能通过google面试的。

// 常规二分const throwEggs2 = (arr) => {let left = 1let right = 100let mid = 0while(left <= right) {mid = Math.floor(left + right) / 2if (arr[mid] === 0) {left = mid + 1} else {right = mid - 1}}return mid
}

解法3:均衡切割

虽然二分法不够优秀,但体现了切分范围的思想。

我们的基本思路是,将100层切分成两个维度,由两个鸡蛋分别控制一个维度。

一个维度是用第一颗鸡蛋分金定穴,另一个维度是用第二颗鸡蛋在前蛋的基础上进行遍历。

换言之,我们是将100层切分成若干个区块,由第一颗鸡蛋确定最高安全楼层所属的区块,再由第二颗鸡蛋逐层确定其具体的位置。

在1-100层楼之间,假设我们从上往下尝试,即从100层开始扔第一颗蛋,大概率是碎了,那第二颗蛋便又回到了解法1

所以,我们应该从下往上进行划分、尝试,这样即使第一颗鸡蛋碎了,用第二颗蛋遍历的成本也比较低。

比如第一颗蛋每10层扔一次,第一次从10层扔,第二次从20层扔,第三次从30层扔……一直扔到100层。

第二颗蛋就只用在第一颗蛋摔碎的层数和前一次的安全层之间的9层进行范围遍历。

也就是说,要是第一颗鸡蛋在第30层摔碎了,那就拿第二颗蛋从21层到29层逐层尝试。

这样的最好情况就是第一颗蛋在第10层碎掉,总的尝试次数为1+1=2次。

最坏的情况是在第100层碎掉,总尝试次数为10+9=19次。

在这里插入图片描述

// 均衡切割
const throwEggs3 = (arr) => {let count = 0// 第一个鸡蛋for (let i = 1; i < 10; i++) {if (arr[i * 10] === 1) {count = i * 10break}}// 第二个鸡蛋for(let i = count - 1; i >= count - 10; i--) {if (arr[i] !== 1) {return i}}
}

解法4:微妙平衡

上面的方法,看似已经比较完美了。

但是我们再具像化一点,就能发现问题:第一颗鸡蛋能快速定位安全楼层低的情况,但如果安全楼层位置越高,耗时就会越久,而第二颗鸡蛋在每个区块内的消耗,都是一样的。

如果鸡蛋的最高安全层为18或者98,用解法3的思路的话,这两种情况的总尝试次数并不一样:

最高安全楼层为18时,第一颗鸡蛋试了2次就定位了区块;而最高安全楼层为98时,第一颗鸡蛋试了10次才定位了区块。

虽然第二颗鸡蛋在区块内部的逐层尝试次数是一样的,但98层对应的总尝试次数就多太多了。

原因就是区块完全均匀划分对大数不利

明白了这个缺陷,也就知道了改进的基本思想:要对100找出一种二维区块划分,但不是均匀划分。

对于比较小的区块部分,其包含的楼层范围可以适当增加;越向大数部分走,其包含的楼层范围越来越小。从下往上,每一个区块内所含楼层递减。

在最高安全楼层比较低的情况下,第一颗鸡蛋尝试的次数少;在最高安全楼层比较高的情况下,则第二颗鸡蛋尝试的次数少。

就是用第二颗鸡蛋尝试次数的减少来弥补第一颗鸡蛋需要的尝试次数的递增,使两颗鸡蛋在不同维度上的尝试次数此消彼长,达到一种总体上的平衡。

每上一个区块,第一颗鸡蛋消耗的次数就+1,我们索性就假设每个区块包含的楼层数逐级递减1,以达到平衡。

那么每个区块包含的层数应该如何划分呢?

我们假设第一个区块有X层,那么第二个就是X-1,以此类推,我们就得到了一个方程式:

X+(X-1)+(X-2)+···+3+2+1≥100

可以看出来,这时候区块个数和第一个区块包含的层数其实是相等的。

在这里插入图片描述

现在我们回过头来,再仔细看看方程式,是不是有点熟悉,不就是等差数列求和么!

所以我们化简方程式:

X(X+1)/2≥100

这里X最小值我们向上取整,得到14。

有同学会问为什么一定到1呢,最后一个区块一定只有1层吗?

不是的,到1是表示在X个区块的情况下,最多能覆盖的层数。

比如我们这个例子,X是14,求出的楼层总数是105,也就是可以覆盖105层,题目要求的100层当然绰绰有余。

由此,第一个区块包含14层楼,即1到14层;

第二个区块包含13层楼,即15到27层;

第三个区块包含12层楼,即28到39层;

······

第一颗鸡蛋依次试第14、27、39、50、60、69、77、84、90、95、99、100层。只要期间任何一次鸡蛋碎了,就拿第二颗鸡蛋从上一次的安全层之后开始逐层尝试,直至第二颗鸡蛋也摔碎为止。

用这个方法,总次数一定不会超过14次

因为最高安全楼层越高,第一颗鸡蛋的尝试次数也就越多,但第二颗鸡蛋的尝试次数随之越来越少,两者始终维持着一种微妙的平衡,最后总的尝试次数波动也不会太大。

在这里插入图片描述

下面是全部的代码实现:

// 假设arr表示100层楼,每层楼鸡蛋会不会碎,如果arr[i] === 1 表示i层楼的鸡蛋会碎,arr[i] === 0表示第i层楼的鸡蛋不会碎// 暴力
const throwEggs1 = (arr) => {for(let i = 1; i <= 100; i++) {if (arr[i] === 1) {return i}}
}// 常规二分const throwEggs2 = (arr) => {let left = 1let right = 100let mid = 0while(left <= right) {mid = Math.floor(left + right) / 2if (arr[mid] === 0) {left = mid + 1} else {right = mid - 1}}return mid
}// 均衡切割
const throwEggs3 = (arr) => {let count = 0// 第一个鸡蛋for (let i = 1; i < 10; i++) {if (arr[i * 10] === 1) {count = i * 10break}}// 第二个鸡蛋for(let i = count - 1; i >= count - 10; i--) {if (arr[i] !== 1) {return i}}
}// 微妙平衡
const throwEggs4 = (arr) => {let block = 10let count = 0// block(block + 1) / 2 >= 100while(block * block + block < 100 * 2) {block++}// 第一个鸡蛋的尝试let temp = block // 每层区块的最后一个while(temp <= 100) {if (arr[temp] === 1) {count = tempbreak}--blocktemp += block}// 第二个鸡蛋的尝试for(let i = count - 1; i >= count - block; i--) {if (arr[i] === 0) {return i}}
}

除了文中我们讨论的解法,这道题也还有其他解法可以选择,如果感兴趣大家可以自己研究研究,也欢迎来一起讨论!

凭心而论,要是在毫无准备的情况下,一般人只能想到第一种,做过算法题的,应该能够想到第二种,想到解法三已经是最优解了,能在这么短的时间内想到解法四的大神是凤毛麟角。

好了,祝大家周末愉快!

最后,希望大家读完这篇文章都能有所收获!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/84343.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于FPGA的Lorenz混沌系统verilog开发,含testbench和matlab辅助测试程序

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 将vivado的仿真结果导入到matlab显示三维混沌效果&#xff1a; 2.算法运行软件版本 vivado2019.2 matlab2022a 3.部分核心程序 testbench如下所…

继续深挖,Jetpack Compose的State快照系统

Jetpack Compose 有一种特殊的方式来表示状态和传播状态变化&#xff0c;从而驱动最终的响应式体验&#xff1a;状态快照系统&#xff08;State snapshot system&#xff09;。这种响应式模型使我们的代码更加强大和简洁&#xff0c;因为它允许组件根据它们的输入自动重组&…

Vue2项目练手——通用后台管理项目第一节

Vue2项目练手——通用后台管理项目 知识补充yarn和npm区别npm的缺点&#xff1a;yarn的优点 npm查看镜像和设置镜像 项目介绍项目的技术栈 项目搭建文件目录 创建路由&#xff0c;引入element-uirouter/index.jsmain.jspages/Users.vuepages/Main.vuepages/Home.vuepages/Login…

phpstorm动态调试

首先在phpstudy搭建好网站&#xff0c;在管理拓展开启xdebug拓展 查看php.ini配置已经更改 需要增添修改一下设置 [Xdebug] zend_extensionD:/phpstudy_pro/Extensions/php/php5.6.9nts/ext/php_xdebug.dll xdebug.collect_params1 xdebug.collect_return1 xdebug.auto_trace…

预防缓存穿透工具类

1. 前言 缓存穿透大家都知道&#xff0c;这里简单过一下 缓存和数据库中都没有的数据&#xff0c;而用户不断发起请求。比如查询id -1 的值 想着很多面向C端的查询接口&#xff0c;可能都需要做一下缓存操作&#xff0c;这里简单写了个自定义注解&#xff0c;将查询结果(包含…

法雷奥Valeo EDI解决方案

法雷奥集团&#xff08;Valeo&#xff09;是一家总部位于法国的专业致力于汽车零部件、系统、模块的设计、开发、生产及销售的工业集团。公司业务涉及原配套业务及售后业务&#xff0c;是世界领先的汽车零部件供应商&#xff0c;为世界上所有的主要汽车厂提供配套。作为一家高科…

SQL阶段性优化

&#x1f61c;作 者&#xff1a;是江迪呀✒️本文关键词&#xff1a;MySQL、SQL优化、阶段性优化☀️每日 一言&#xff1a;我们要把懦弱扼杀在摇篮中。 一、前言 我们在做系统的过程中&#xff0c;难免会遇到页面查询速度慢&#xff0c;性能差的问题&#xff0c;…

Transformer代码计算过程全解

条件设置 batch_size1 src_len 8 # 源句子的最大长度 根据这个进行padding的填充 tgt_len 7 # 目标输入句子的最大长度 根据这个进行padding的填充 d_model512 # embedding的维度 d_ff2048 # 全连接层的维度 h_head8 # Multi-Head Attention 的…

CAPL - Panel和TestModule结合实现测试项可选

目录 一、定义脚本编号和脚本组编号 1、测试组定义 2、测试脚本编号定义

2022年30m全国逐年土地覆被数据

1.研究背景 2023年8月,武汉大学杨杰和黄昕教授团队向公众更新发布了CLCD 2022年全国土地覆数据(V1.0.2)。而CLCD 2021年全国土地覆数据(V1.0.1)也是在去年8月向公众更新发布。 中国在过去几十年中经济和人口迅速发展,土地覆盖随之发生巨大变化,因此迫切需要对其进行连续…

支付宝的支付

对于前端的入门学习的人员来说&#xff0c;支付宝提供的沙箱环境&#xff0c;可以让你体验支付的整个流程。 一、沙箱环境 沙箱&#xff08;又叫沙盘&#xff09;环境是用于开发者测试的模拟环境&#xff0c;中间发生任何行为都是虚拟的&#xff0c;如支付。 二、技术选型 支…

容器镜像生成记

概述 容器docker/k8s发布已有一段时间&#xff0c;不少小伙伴开始上手实践。下面以一个简单的应用为例。来说明如何生成镜像并推送至镜像仓库。 准备工作 镜像仓库注册 以最常见的aliyun镜像仓库为例&#xff1a; 支付宝登录aliyun官网&#xff0c;搜索容器镜像服务&#x…