这是个非常经典的分析,用于来确定蛋白互作。
传统的蛋白互作分析,就是co-IP,Mass spec等,但这类技术的假阳性和敏感度都不够。
还有就是荧光图,然后对图像做共定位分析,这个需要非常高分辨率的共聚焦显微镜。
还有一种,表观因子的共定位分析,那就是对ChIP-seq和Cut&Run的summit做距离分析。
bedtools closest 已经帮你实现了这个功能。【peak注释到gene其实也用了类似的函数】
https://bedtools.readthedocs.io/en/latest/content/tools/closest.html
这个方法存在的问题:
- summit的鉴定非常依赖高质量的ChIP-seq和Cut&Run数据
但我觉得这个技术整体是可行的,能够得到一部分有意义的信息。
代码:
bedtools closest -a Raghwan_dTAG/dT29_SOX9_DM1.sorted.mapped.bam_summits.bed -b Paul_dTAG/DMSO_SMARCC1_1.sorted.mapped.bam_summits.bed -d > SOX9_SMARCC1.summit.distance bedtools closest -a Raghwan_dTAG/dT29_SOX9_DM1.sorted.mapped.bam_summits.bed -b Paul_dTAG/DMSO_SOX9_1.sorted.mapped.bam_summits.bed -d > SOX9_SOX9.summit.distance bedtools closest -a Raghwan_dTAG/dT29_SOX9_DM1.sorted.mapped.bam_summits.bed -b Raghwan_dTAG/dT29_SMB1_DM1.sorted.mapped.bam_summits.bed -d > SOX9_SMB1.summit.distance bedtools closest -a Raghwan_dTAG/dT29_SOX9_DM1.sorted.mapped.bam_summits.bed -b Raghwan_dTAG/dT29_SC1_DM1.sorted.mapped.bam_summits.bed -d > SOX9_SC1.summit.distance bedtools closest -a Raghwan_dTAG/dT29_SOX9_DM1.sorted.mapped.bam_summits.bed -b Raghwan_dTAG/dT29_PBR1_DM1.sorted.mapped.bam_summits.bed -d > SOX9_PBR1.summit.distance bedtools closest -a Raghwan_dTAG/dT29_SOX9_DM1.sorted.mapped.bam_summits.bed -b Raghwan_dTAG/dT29_BRD9_DM1.sorted.mapped.bam_summits.bed -d > SOX9_BRD9.summit.distance bedtools closest -a Raghwan_dTAG/dT29_SOX9_DM1.sorted.mapped.bam_summits.bed -b Raghwan_dTAG/dT29_ARD1_DM1.sorted.mapped.bam_summits.bed -d > SOX9_ARD1.summit.distance
参考:
- http://localhost:17449/lab/tree/projects/BAF_SOX9/diffbind/5.Motif.ipynb#summit-distance