摘录

news/2024/12/19 17:19:14/文章来源:https://www.cnblogs.com/seekwhale13/p/18617604

Awesome-Compositional-Zero-Shot

Papers and codes about Compositional Zero Shot Learning(CZSL) for computer vision are present on this page. Besides, the commonly-used datasets for CZSL are also introduced.

Papers

2024

Title Venue Dataset PDF CODE 可用性
Imaginary-Connected Embedding in Complex Space for Unseen Attribute-Object Discrimination TPAMI 2024 MIT-States & UT-Zappos & C-GQA PDF CODE 无代码
Disentangling Before Composing: Learning Invariant Disentangled Features for Compositional Zero-Shot Learning TPAMI 2024 UT-Zappos & C-GQA & AO-CLEVr PDF CODE 效果差
Simple Primitives With Feasibility- and Contextuality-Dependence for Open-World Compositional Zero-Shot Learning TPAMI 2024 MIT-States & UT-Zappos & C-GQA PDF -
C2C: Component-to-Composition Learning for Zero-Shot Compositional Action Recognition ECCV 2024 C-GQA & Sth-com PDF CODE 与视频有关?
Prompting Language-Informed Distribution for Compositional Zero-Shot Learning ECCV 2024 MIT-States & C-GQA & VAW-CZSL PDF CODE 创新点是使用了大模型,难以基于此改进?
MRSP: Learn Multi-representations of Single Primitive for Compositional Zero-Shot Learning ECCV 2024 MIT-States UT-Zappos & Clothing16K PDF -
Understanding Multi-compositional learning in Vision and Language models via Category Theory ECCV 2024 MIT-States & UT-Zappos & C-GQA PDF CODE 无代码
Beyond Seen Primitive Concepts for Attributes-Objects Compositional Learning CVPR 2024 MIT-States & C-GQA & VAW-CZSL PDF -
Context-based and Diversity-driven Specificity in Compositional Zero-Shot Learning CVPR 2024 MIT-States & UT-Zappos & C-GQA PDF -
Troika: Multi-Path Cross-Modal Traction for Compositional Zero-Shot Learning CVPR 2024 MIT-States & UT-Zappos & C-GQA PDF -
Retrieval-Augmented Primitive Representations for Compositional Zero-Shot Learning AAAI 2024 MIT-States & UT-Zappos & C-GQA PDF -
ProCC: Progressive Cross-primitive Compatibility for Open-World Compositional Zero-Shot Learning AAAI 2024 MIT-States & UT-Zappos & C-GQA PDF CODE 指标奇怪?
Revealing the Proximate Long-Tail Distribution in Compositional Zero-Shot Learning AAAI 2024 MIT-States & UT-Zappos & C-GQA PDF -
A Dynamic Learning Method towards Realistic Compositional Zero-Shot Learning AAAI 2024 MIT-States & UT-Zappos & C-GQA PDF -
Continual Compositional Zero-Shot Learning IJCAI 2024 UT-Zappos & C-GQA PDF -
CSCNET: Class-Specified Cascaded Network for Compositional Zero-Shot Learning ICASSP 2024 MIT-States & C-GQA PDF CODE 无代码
Learning Conditional Prompt for Compositional Zero-Shot Learning ICME 2024 MIT-States & UT-Zappos & C-GQA PDF -
PMGNet: Disentanglement and entanglement benefit mutually for compositional zero-shot learning CVIU 2024 UT-Zappos & C-GQA & VAW-CZSL PDF -
LVAR-CZSL: Learning Visual Attributes Representation for Compositional Zero-Shot Learning TCSVT 2024 MIT-States & UT-Zappos & C-GQA PDF CODE 可参考
Agree to Disagree: Exploring Partial Semantic Consistency against Visual Deviation for Compositional Zero-Shot Learning TCDS 2024 MIT-States & UT-Zappos & C-GQA PDF -
Compositional Zero-Shot Learning using Multi-Branch Graph Convolution and Cross-layer Knowledge Sharing PR 2024 MIT-States & UT-Zappos & C-GQA PDF -
Visual primitives as words: Alignment and interaction for compositional zero-shot learning PR 2024 MIT-States & UT-Zappos & C-GQA PDF -
Mutual Balancing in State-Object Components for Compositional Zero-Shot Learning PR 2024 MIT-States & UT-Zappos & C-GQA PDF -
GIPCOL: Graph-Injected Soft Prompting for Compositional Zero-ShotLearning WACV 2024 MIT-States & UT-Zappos & C-GQA PDF CODE 代码不可用
CAILA: Concept-Aware Intra-Layer Adapters for Compositional Zero-Shot Learning WACV 2024 MIT-States & UT-Zappos & C-GQA PDF -

2023

Title Venue Dataset PDF CODE
Distilled Reverse Attention Network for Open-world Compositional Zero-Shot Learning ICCV 2023 MIT-States & UT-Zappos & C-GQA PDF -
Hierarchical Visual Primitive Experts for Compositional Zero-Shot Learning ICCV 2023 MIT-States & C-GQA &VAW-CZSL PDF CODE
Do Vision-Language Pretrained Models Learn Composable Primitive Concepts? TMLR 2023 MIT-States PDF CODE
Reference-Limited Compositional Zero-Shot Learning ICMR 2023 RL-CZSL-ATTR & RL-CZSL-ACT PDF CODE
Learning Conditional Attributes for Compositional Zero-Shot Learning CVPR 2023 MIT-States & UT-Zappos & C-GQA PDF CODE
Learning Attention as Disentangler for Compositional Zero-shot Learning CVPR 2023 Clothing16K & UT-Zappos & C-GQA PDF CODE
Decomposed Soft Prompt Guided Fusion Enhancing for Compositional Zero-Shot Learning CVPR 2023 MIT-States & UT-Zappos & C-GQA PDF CODE
Learning to Compose Soft Prompts for Compositional Zero-Shot Learning ICLR 2023 MIT-States & UT-Zappos & C-GQA PDF CODE
Compositional Zero-Shot Artistic Font Synthesis IJCAI 2023 SSAF & Fonts PDF CODE
Hierarchical Prompt Learning for Compositional Zero-Shot Recognition IJCAI 2023 MIT-States & UT-Zappos & C-GQA PDF -
Leveraging Sub-Class Discrimination for Compositional Zero-shot Learning AAAI 2023 UT-Zappos & C-GQA PDF CODE
Dual-Stream Contrastive Learning for Compositional Zero-Shot Recognition TMM 2023 MIT-States & UT-Zappos PDF -
Isolating Features of Object and Its State for Compositional Zero-Shot Learning TETCI 2023 MIT-States & UT-Zappos & C-GQA PDF -
Learning Attention Propagation for Compositional Zero-Shot Learning WACV 2023 MIT-States & UT-Zappos & C-GQA PDF -

2022

Title Venue Dataset PDF CODE
A Decomposable Causal View of Compositional Zero-Shot Learning TMM 2022 MIT-States & UT-Zappos PDF CODE
KG-SP: Knowledge Guided Simple Primitives for Open World Compositional Zero-Shot Learning CVPR 2022 MIT-States & UT-Zappos & C-GQA PDF CODE
Disentangling Visual Embeddings for Attributes and Objects CVPR 2022 MIT-States & UT-Zappos & VAW-CZSL PDF CODE
Siamese Contrastive Embedding Network for Compositional Zero-Shot Learning CVPR 2022 MIT-States & UT-Zappos & C-GQA PDF CODE
On Leveraging Variational Graph Embeddings for Open World Compositional Zero-Shot Learning ACM MM 2022 MIT-States & UT-Zappos & C-GQA PDF -
3D Compositional Zero-shot Learning with DeCompositional Consensus ECCV 2022 C-PartNet PDF CODE
Learning Invariant Visual Representations for Compositional Zero-Shot Learning ECCV 2022 UT-Zappos & AO-CLEVr & Clothing16K PDF CODE
Learning Graph Embeddings for Open World Compositional Zero-Shot Learning TPAMI 2022 MIT-States & UT-Zappos & C-GQA PDF -
Bi-Modal Compositional Network for Feature Disentanglement ICIP 2022 MIT-States & UT-Zappos PDF -

2021

Title Venue Dataset PDF CODE
Learning Graph Embeddings for Compositional Zero-Shot Learning CVPR 2021 MIT-States & UT-Zappos & C-GQA PDF CODE
Open World Compositional Zero-Shot Learning CVPR 2021 MIT-States & UT-Zappos PDF CODE
Independent Prototype Propagation for Zero-Shot Compositionality NeurIPS 2021 AO-Clevr & UT-Zappos PDF CODE
Revisiting Visual Product for Compositional Zero-Shot Learning NeurIPS 2021 MIT-States & UT-Zappos & C-GQA PDF -
Learning Single/Multi-Attribute of Object with Symmetry and Group TPAMI 2021 MIT-States & UT-Zappos PDF CODE
Relation-aware Compositional Zero-shot Learning for Attribute-Object Pair Recognition TMM 2021 MIT-States & UT-Zappos PDF CODE
A Contrastive Learning Approach for Compositional Zero-Shot Learning ICMI 2021 MIT-States & UT-Zappos & Fashion200k PDF -

2020

Title Venue Dataset PDF CODE
Symmetry and Group in Attribute-Object Compositions CVPR 2020 MIT-States & UT-Zappos PDF CODE
Learning Unseen Concepts via Hierarchical Decomposition and Composition CVPR 2020 MIT-States & UT-Zappos PDF -
A causal view of compositional zero-shot recognition NeurIPS 2020 UT-Zappos & AO-Clevr PDF CODE
Compositional Zero-Shot Learning via Fine-Grained Dense Feature Composition NeurIPS 2020 DFashion & AWA2 & CUB & SUN PDF CODE

2019

Title Venue Dataset PDF CODE
Adversarial Fine-Grained Composition Learning for Unseen Attribute-Object Recognition ICCV 2019 MIT-States & UT-Zappos PDF -
Task-Driven Modular Networks for Zero-Shot Compositional Learning ICCV 2019 MIT-States & UT-Zappos PDF CODE
Recognizing Unseen Attribute-Object Pair with Generative Model AAAI 2019 MIT-States & UT-Zappos PDF -

2018

Title Venue Dataset PDF CODE
Attributes as Operators: Factorizing Unseen Attribute-Object Compositions CVPR 2018 MIT-States & UT-Zappos PDF CODE

2017

Title Venue Dataset PDF CODE
From Red Wine to Red Tomato: Composition with Context CVPR 2017 MIT-States & UT-Zappos PDF CODE

Datasets

Most CZSL papers usually conduct experiments on MIT-States and UT-Zappos datasets. However, as CZSL receives more attention, some new datasets are proposed and used in recent papers, such as C-GQA, AO-CLEVr, etc.

MIT-States

Introduced by Isola et al. in Discovering States and Transformations in Image Collections.

The MIT-States dataset has 245 object classes, 115 attribute classes and ∼53K images. There is a wide range of objects (e.g., fish, persimmon, room) and attributes (e.g., mossy, deflated, dirty). On average, each object instance is modified by one of the 9 attributes it affords.

Source:http://web.mit.edu/phillipi/Public/states_and_transformations/index.html

UT-Zappos

Introduced by Yu et al. in Fine-Grained Visual Comparisons with Local Learning.

UT Zappos50K (UT-Zap50K) is a large shoe dataset consisting of 50,025 catalog images collected from Zappos.com. The images are divided into 4 major categories — shoes, sandals, slippers, and boots — followed by functional types and individual brands. The shoes are centered on a white background and pictured in the same orientation for convenient analysis.

Source:https://vision.cs.utexas.edu/projects/finegrained/utzap50k/

C-GQA

Introduced by Naeem et al. in Learning Graph Embeddings for Compositional Zero-shot Learning.

Compositional GQA (C-GQA) dataset is curated from the recent Stanford GQA dataset originally proposed for VQA. C-GQA includes 413 attribute classes and 674 object classes, contains over 9.5k compositional labels with diverse compositional classes and clean annotations, making it the most extensive dataset for CZSL.

Source:https://github.com/ExplainableML/czsl

AO-CLEVr

Introduced by Atzmon et al. in A causal view of compositional zero-shot recognition.

AO-CLEVr is a new synthetic-images dataset containing images of "easy" Attribute-Object categories, based on the CLEVr. AO-CLEVr has attribute-object pairs created from 8 attributes: { red, purple, yellow, blue, green, cyan, gray, brown } and 3 object shapes {sphere, cube, cylinder}, yielding 24 attribute-object pairs. Each pair consists of 7500 images. Each image has a single object that consists of the attribute-object pair. The object is randomly assigned one of two sizes (small/large), one of two materials (rubber/metallic), a random position, and random lightning according to CLEVr defaults.

Source:https://github.com/nv-research-israel/causal_comp

VAW-CZSL

Introduced by Nirat Saini et al. in Disentangling Visual Embeddings for Attributes and Objects.

VAW-CZSL, a subset of VAW, which is a multilabel attribute-object dataset. Sample one attribute per image, leading to much larger dataset in comparison to previous datasets. The images in the VAW dataset come from the Visual Genome dataset which is also the source of the images in the GQA and the VG-Phrasecut datasets.

Source:https://github.com/nirat1606/OADis.

Compositional PartNet

Introduced by Naeem et al. in 3D Compositional Zero-shot Learning with DeCompositional Consensus.

Compositional PartNet (C-PartNet) is refined from PartNet with a new labeling scheme that relates the compositional knowledge between objects by merging and renaming the repeated labels. The relabelled C-PartNet consists of 96 parts compared to 128 distinct part labels in the original PartNet.

Source:https://github.com/ferjad/3DCZSL

Results

Experimental results of some methods on the two most commonly-used datasets(MIT-States, UT-Zappos) and the most challenging dataset(C-GQA) are collected and presented.

All the results are obtained under the setting of Closed World Generalized Compositional Zero-Shot Learning. The current optimal metrics are in bold.

MIT-States

Method Seen Unseen HM AUC
DECA 32.2 27.4 20.3 6.6
OADis 31.1 25.6 18.9 5.9
SCEN 29.9 25.2 18.4 5.3
CVGAE 28.5 25.5 18.2 5.3
Co-CGE 31.1 5.8 6.4 1.1
CGE 32.8 28.0 21.4 6.5
BMP-Net 32.9 19.3 16.5 4.3
CompCos 25.3 24.6 16.4 4.5
SymNet(CVPR) 24.4 25.2 16.1 3.0
SymNet(TPAMI) 26.2 26.3 16.8 4.5
HiDC - 15.4 15.0 -
AdvFineGrained - 13.5 14.0 -
TMN 20.2 20.1 13.0 2.9
GenModel 24.8 13.4 11.2 2.3
AttrAsOp 14.3 17.4 9.9 1.6
RedWine 20.7 17.9 11.6 2.4

UT-Zappos

Method Seen Unseen HM AUC
DECA 64.0 68.8 51.7 37.0
IVR(fixed) 56.9 65.5 46.2 30.6
OADis 59.5 65.5 44.4 30.0
SCEN 63.5 63.1 47.8 32.0
CVGAE 65.0 62.4 49.8 34.6
ProtoProp 62.1 65.5 50.2 34.7
Co-CGE 62.0 44.3 40.3 23.1
CGE 64.5 71.5 60.5 33.5
BMP-Net 83.9 60.9 56.9 44.7
CompCos 59.8 62.5 43.1 28.7
SymNet(TPAMI) 10.3 56.3 24.1 26.8
HiDC - 53.4 52.4 -
CAUSAL 39.7 26.6 31.8 23.3
AdvFineGrained - 48.5 50.7 -
TMN 58.7 60.0 45.0 29.3
AttrAsOp 59.8 54.2 40.8 25.9
RedWine 57.3 62.3 41.0 27.1

C-GQA

Method Seen Unseen HM AUC
SCEN 28.9 25.4 17.5 5.5
CVGAE 28.2 11.9 13.9 2.8
Co-CGE 32.1 2.0 3.4 0.78
CGE 31.4 14.0 14.5 3.6

Acknowledgements

This page is made by Yanyi Zhang and Jianghao Li, both of whom are graduate students of Dalian University of Technology.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/855482.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【笔记】组合数学初步

一些初等的组合数学知识二项式系数 定义: 我们在高中时常见的二项式系数的形式是 \[C_{n}^{k} = \frac{n!}{k!(n-k)!} \]但下文将采用如下的定义: \[\binom{n}{k} = \begin{cases}\dfrac{n^{\underline{k}}}{k!} & k \ge 0\\\\0 & k < 0\end{cases} \]注意这里对 …

翻转字符串翻转单词

一、翻转字符串问题描述 请实现⼀个算法,在不使⽤额外数据结构和储存空间的情况下,翻转⼀个给定的字符串(可以使⽤单个过程变量)。 解题思路 由于不允许使用额外的数据接口和存储空间,所以我们将⼀个字符串以中间字符为轴,前后翻转,也就是将str[len]赋值给str[0],将str[0…

拒绝 Helm? 如何在 K8s 上部署 KRaft 模式 Kafka 集群?

首发:运维有术 今天分享的主题是:不使用 Helm、Operator,如何在 K8s 集群上手工部署一个开启 SASL 认证的 KRaft 模式的 Kafka 集群? 本文,我将为您提供一份全面的实战指南,逐步引导您完成以下关键任务:配置 Kafka Secret:管理用户密码和集群 ID 配置 Kafka Service:使…

Vulnhub 靶场 Jetty: 1

前期准备 靶机地址:https://www.vulnhub.com/entry/jetty-1,621/ Description Back to the Top The company Aquarium Life S.L. has contacted you to perform a pentest against one of their machines. They suspect that one of their employees has been committing frau…

人车防碰撞识别智慧矿山一体机矿山监控系统中的平台一体机和解码器如何选型?

在构建高效、可靠的视频监控系统时,选择合适的平台一体机和解码器是至关重要的一步。这不仅关系到监控系统的稳定性和可靠性,还直接影响到监控画面的清晰度和系统的扩展性。以下是在选择过程中需要考虑的关键因素,以确保您的监控系统能够满足特定场景的需求,并在未来几年内…

2024年项目管理软件对比:14款高效工具帮你提升工作效率

在快节奏的现代社会,项目管理的重要性日益凸显。为了提高工作效率,各类项目管理软件应运而生。本文将为您介绍14款高效的项目管理工具,包括禅道、Trello、Jira、Asana、Teambition、Wrike、Monday.com、ClickUp、ProjectManager、Basecamp、Zoho Projects、Smartsheet、Liqu…

2024年项目管理软件对比:14款高效工具帮你提升工作效

在快节奏的现代社会,项目管理的重要性日益凸显。为了提高工作效率,各类项目管理软件应运而生。本文将为您介绍14款高效的项目管理工具,包括禅道、Trello、Jira、Asana、Teambition、Wrike、Monday.com、ClickUp、ProjectManager、Basecamp、Zoho Projects、Smartsheet、Liqu…

vb编译环境运行没问题,生成exe运行时报错,错误48加载dll错误,右键以管理员身份运行可以但麻烦,其解决办法如下。

解决办法(推荐): 打开vb后,弹出新建工程标准exe,要点打开。 然后再打开已建的工程,这样生成的exe可以直接双击运行,就不会报错了。2、如需重装vb,要记得“数据访问”点“更改选项”去掉ADO和RDS前面的勾选,不然会一直停在更新状态。 1.打开安装包点击SETUP.EXE(如果会…

Java项目实战之Java小游戏-俄罗斯方块设计与实现(附项目源代码地址)

该项目gitee地址:https://gitee.com/lsy_loren/loren-tetris.git一、游戏概述 本游戏是一款经典的俄罗斯方块游戏,使用Java语言开发,具有图形用户界面(GUI)。玩家通过操作方块的移动、旋转和下落,使其填满一行或多行来消除得分,并随着得分的增加提升等级。游戏还具备暂停…

charles中map local改写接口返回参数

先找到接口-》右键-》save response -》存入桌面然后文件的返回参数 右键-》map local 即可修改返回结果

renben-openstack-keystone操作

controller节点操作source /root/keystonerc_admin 1.查看openstack中keystone的endpoint openstack endpoint list +----------------------------------+-----------+--------------+--------------+| ID | Region | Service Name | Servic…