纪念 Jonathan Barzilai

我在读博期间研究了关于非线性优化算法中的Barzilai-Borwein(BB)步长。正如我的导师安老师所言:梯度下降法是优化算法的基石(只考虑一般可微的目标函数)。在该算法中,迭代点每次沿着当前的负梯度方向"走一步",一直迭代下去,逼近最优解(当然是局部的)。一个自然地问题是这个"走一步"的步长该如何选取?神奇的BB步长提供了一个方案(包括了长短两个步长)。该步长的提出者Jonathan Barzilai 是一位富有激情的学者,他直到生命的最后仍然在进行科学研究。下图是Barzilai教授在2019在网上回答问题的截图 (During my doctoral studies, I studied the Barzilai-Borwein (BB) step size in nonlinear optimization algorithms. As my mentor, Mr. An, said: Gradient descent is the cornerstone of optimization algorithms (only considering general differentiable objective functions). In this algorithm, the iteration point "takes a step" in the direction of the current negative gradient each time, and iterates continuously to approach the optimal solution (of course, local). A natural question is how to choose the step size of this "step"? The magical BB step size provides a solution (including long and short step sizes). Jonathan Barzilai, the proposer of this step size, was a passionate scholar who continued to conduct scientific research until the end of his life. The picture below is a screenshot of Professor Barzilai answering questions online in 2019.)。

image

做为一个初入科研领域的学生,我想以此博文来纪念这位对科学研究做出卓越贡献的学者。(As a student just entering the field of scientific research, I would like to use this blog post to commemorate this scholar who has made outstanding contributions to scientific research.)

Barzilai 教授出生于英国托管时期的以色列特拉维夫。他是一名才华横溢的学生,在以色列海法的以色列理工学院 (Technion) 获得了应用数学学士、硕士和博士学位。Barzilai 教授因患癌症,于2022年5月去世。(Prof.Barzilai was born in Tel Aviv, Israel during the British mandate. A brilliant student, he received his bachelor's, master's and doctoral degrees in applied mathematics from the Israel Institute of Technology (Technion) in Haifa, Israel. Barzilai passed away in May 2022, after a battle with cancer. )
\(\qquad\qquad\qquad\quad\quad\quad\quad\quad\quad\)image

随后,他在以色列军队服役六年,担任情报官,研究应用数学算法,之后获得数学优化研究生学位。在攻读博士学位期间,他是特拉华大学的客座研究员,毕业后,他进入德克萨斯大学奥斯汀分校和约克大学担任博士后。1984 年,他首次受聘于达尔豪西大学管理学院。在此期间,他还被达尔豪西大学数学系兼职。(He then spent six years in the Israeli military where he worked on applied mathematical algorithms as an intelligence officer before completing graduate degrees in mathematical optimization. During his doctorate, he was a visiting researcher at the University of Delaware and upon completion, he took up postdoctoral positions at the University of Texas in Austin and York University in Ontario. His first faculty appointment was at the Faculty of Management at Dalhousie University in 1984. During this time, he was also cross appointed at the Department of Mathematics at Dal.)

他与 Jonathan Borwein 一起开发了 Barzilai-Borwein 梯度法,被广泛认为是对非线性优化的重大贡献。他对优化研究的热情一直持续到生命的最后一天,在此期间,他在算法方面取得了重大突破,对人工智能训练等应用具有重要意义。(Along with Jonathan Borwein, he developed the Barzilai-Borwein gradient method, widely recognized as a very significant contribution to non-linear optimization. His passion for optimization research continued to his very last days, and throughout that time he made significant breakthroughs in algorithms with implications for such applications as AI training.)

1987 年,他加入新斯科舍技术大学 (TUNS),担任计算机科学学院院长。1997 年,TUNS 与 Dal 合并,他转到工业工程系。2017 年退休后,他一直活跃于研究领域,直到生命的最后一刻。他的另一个爱好是测量理论和决策理论与分析的相关领域。(In 1987, he joined the Technical University of Nova Scotia (TUNS) as the Director of the School of Computer Science. When TUNS merged with Dal in 1997, he moved to the Department of Industrial Engineering. After his retirement in 2017, he continued to stay active in research until the very end. His other passion was the related areas of measurement theory and decision theory and analysis.)

Barzilai 博士发表了关于测量和决策理论的主要论文,并开发了一种用于单个决策者或群体进行测量、评估和决策的方法——偏好函数建模 (PFM),该方法基于对层次分析法、效用理论、决策理论、测量理论和相关领域的数学基础的二十多年研究。他对这些领域的现有理论提出了挑战,最近完成了一本名为《纯经济学》的书(即将在他死后出版),书中他指出了这些学科的主要缺陷并提出了纠正措施。(Dr. Barzilai published major papers on measurement and decision theory and developed a methodology, Preference Function Modelling (PFM), for measurement, evaluation, and decision making by a single decision maker or a group, based on more than twenty years of research into the mathematical foundations of the Analytic Hierarchy Process, utility theory, decision theory, measurement theory, and related fields. He challenged existing theories in these domains and very recently completed a book entitled "Pure Economics" (soon to be published posthumously) in which he points out the major flaws in these disciplines and offers corrections.)

Barzilai 博士对自己和他人都抱有很高的道德和智力标准。他挑战传统,并准备为了捍卫自己的信念而变得不受欢迎。他是一位具有极强幽默感的老师、向导和导师,为那些有幸认识他的人提供宝贵的建议和见解。(Dr. Barzilai held high ethical and intellectual standards, both for himself and others. He challenged convention and was ready to be unpopular in defense of his convictions. He was a teacher, guide, and mentor with a great sense of humour, offering invaluable advice and insights to those who were fortunate to know him.)

参考文献(Reference)

  • Jonathan Barzilai, Jonathan Michael Borwein, Two-Point Step Size Gradient Methods, IMA Journal of Numerical Analysis 8(1):141-148, 1988

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/856292.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

省选数学专题

昌吉市传教士出金身难度升序排序(大概吧)。 [AGC016C] +/- Rectangle 签,虽然国集作业。 贪心是显然的,不说了,这里只考虑正数如何填。 如果\(H\times W-\left\lfloor\frac{H}{h}\right\rfloor\times h\times \left\lfloor\frac{W}{w}\right\rfloor\times w\le \left\lflo…

《DNK210使用指南 -CanMV版 V1.0》第四十五章 人脸识别实验

第四十五章 人脸识别实验 1)实验平台:正点原子DNK210开发板 2)章节摘自【正点原子】DNK210使用指南 - CanMV版 V1.0 3)购买链接:https://detail.tmall.com/item.htm?&id=782801398750 4)全套实验源码+手册+视频下载地址:http://www.openedv.com/docs/boards/k210/A…

【寒武纪mlu220模型移植】(一)目标检测YoLoV8

前言:目标检测可能是大家用的比较多的,先完善这一篇吧。yolov5的导出可以参考官方文档。并且博主比较懒,已经做过一遍的事情,不想验证第二遍,如果有步骤错误或者疏漏导致中间遇到了问题,可以先自己debug,流程大致就是这样的。 一、修改源码首先是拉取yolov8最新的源码,…

基于钜泉计量AD的电表应用专题推荐(ATT7053D、HT7136、HT7627S-E

关于电力仪表上应用专题介绍,钜泉电能计量、PA驱动、Flash存储HiTrend(钜泉)电能计量芯片 单相计量ADC:ATT7053D,ATT7053C,HT7017,HT7017C 三相计量ADC:HT7036、HT7038、ATT7022E、HT7136、HT7132、HT7032-L 单相计量SOC:HT5019、HT5017,HT5025、HT5029,HT5033,HT503…

AI视频抠图来了!还可以替换视频背景,附下载链接

虽然人工智能正在飞速发展中,图像处理技术也在不断升级,但视频背景去除一直都是图像处理任务中最具挑战性的难题之一 Clipper是一款专注于高精度图像分割的AI工具,用于图像和视频的背景去除,允许用户直接输出透明背景(自定义颜色)的视频文件,还提供用一张图片或者其它视…

习题10.3

import numpy as np import statsmodels.formula.api as smf import matplotlib.pyplot as plt# 加载数据 a = np.loadtxt(data10_3.txt)# 设置绘图参数 plt.rc(text, usetex=True) # 启用 LaTeX 字体 plt.rc(font, size=16) # 设置字体大小 plt.style.use(default) # 使用默…

浅谈一下本机、服务器、docker-compose 容器之间网络通信

一、首先,先区分四个对象,它们分别有自己的网络 1、云服务器上,应用服务容器网络(app,nginx,mysql,redis等)app.net 2、云服务器上,模型服务容器网络(ai服务) 模型网络 ai.net 3、云服务器上:宿主机网络(服务器本机) 服务器本机网络 host.net 4、本机:本地网络 loca…

习题10.1

import numpy as np import statsmodels.api as sm import matplotlib.pyplot as plt def check(data): # 提取数据的第一列和第二列 x = data[:, 0] y = data[:, 1] # 使用statsmodels进行线性回归分析 model = sm.OLS(y, sm.add_constant(x)).fit() # 添加常数项 print(mode…

static修饰成员的特点及static修饰成员变量内存图解-java se进阶 day01

1.static介绍 static是静态的意思,它可以用于修饰成员变量和成员方法2.static的特点1.被static修饰了的成员变量,可以被类中的所有对象所共享 虽然stu02没有给school赋值,但是我们用stu02调用时依旧成立,并且打印了南昌交通学院,因为school被共享了,恰好stu01又为其赋值了…

IIS运行遇到问题

1:打开网站时出现的错误提示2:下载对应的.net core Runtime后正常,如下图所示

【最短路】

【最短路算法系统概述】

【Python逆向】深入Pyd逆向

pyd 文件是编译生成的 Python 扩展模块,是类似 so、dll 的一种 Python 文件。 pyd 文件无法像 pyc文件那样恢复源码,只能通过逆向手段去恢复逻辑。 一、理解pyd文件 1.1 编译pyd 自己编译一个 pyd 保留符号来看。 test.py: import base64 key = [ord(i) for i in "key&…