卷积过程详细讲解

1:单通道卷积

以单通道卷积为例,输入为(1,5,5),分别表示1个通道,宽为5,高为5。假设卷积核大小为3x3,padding=0,stride=1。

卷积过程如下:
加粗样式

相应的卷积核不断的在图像上进行遍历,最后得到3x3的卷积结果,结果如下:

在这里插入图片描述

2:多通道卷积1

以彩色图像为例,包含三个通道,分别表示RGB三原色的像素值,输入为(3,5,5),分别表示3个通道,每个通道的宽为5,高为5。假设卷积核只有1个,卷积核通道为3,每个通道的卷积核大小仍为3x3,padding=0,stride=1。

卷积过程如下,每一个通道的像素值与对应的卷积核通道的数值进行卷积,因此每一个通道会对应一个输出卷积结果,三个卷积结果对应位置累加求和,得到最终的卷积结果**(这里卷积输出结果通道只有1个,因为卷积核只有1个。卷积多输出通道下面会继续讲到)**。

可以这么理解:最终得到的卷积结果是原始图像各个通道上的综合信息结果。

在这里插入图片描述

上述过程中,每一个卷积核的通道数量,必须要求与输入通道数量一致,因为要对每一个通道的像素值要进行卷积运算,所以每一个卷积核的通道数量必须要与输入通道数量保持一致。

我们把上述图像通道如果放在一块,计算原理过程还是与上面一样,堆叠后的表示如下:在这里插入图片描述

3:多通道卷积2

在上面的多通道卷积1中,输出的卷积结果只有1个通道,把整个卷积的整个过程抽象表示,过程如下:
在这里插入图片描述
即:由于只有一个卷积核,因此卷积后只输出单通道的卷积结果(黄色的块状部分表示一个卷积核,黄色块状是由三个通道堆叠在一起表示的,每一个黄色通道与输入卷积通道分别进行卷积,也就是channel数量要保持一致,图片组这里只是堆叠放在一起表示而已)。

那么,如果要卷积后也输出多通道,增加卷积核(filers)的数量即可,示意图如下:
在这里插入图片描述
备注:上面的feature map的颜色,只是为了表示不同的卷积核对应的输出通道结果,不是表示对应的输出颜色。

然后将每个卷积核对应的输出通道结果(feature map)进行拼接,图中共有m个卷积核,则输出大小变为(mw’h’),其中w’、h’表示卷积后的通道尺寸,原始输入大小为(nwh)。

因此整个卷积层的尺寸为(mnk1*k2)是一个4维张量,其中m表示卷积核的数量,n表示通道数量,k1表示每一个卷积核通道的宽,k2表示每一个卷积核通道的高。

4:代码输出

以torch为例,nn.Conv2d(in_channels,out_channels,kernel_size,stride=1,padding=0,dilation=1,groups=1,bias=True)

参数解释如下:

in_channels:输入维度

out_channels:输出维度

kernel_size:卷积核大小,可以理解为对每个通道上的卷积的尺寸大小

stride:步长大小

padding:补0

dilation:kernel间距

import torchin_channels = 5  #输入通道数量
out_channels =10 #输出通道数量
width = 100      #每个输入通道上的卷积尺寸的宽
heigth = 100     #每个输入通道上的卷积尺寸的高
kernel_size = 3  #每个输入通道上的卷积尺寸
batch_size = 1   #批数量input = torch.randn(batch_size,in_channels,width,heigth)
conv_layer = torch.nn.Conv2d(in_channels,out_channels,kernel_size=kernel_size)out_put = conv_layer(input)# 输出结果: torch.Size([1, 5, 100, 100])
print(input.shape)
# 输出结果: torch.Size([1, 10, 98, 98])
print(out_put.shape)
# 输出结果: torch.Size([10, 5, 3, 3])
print(conv_layer.weight.shape)

结果说明:

(1)输入的张量信息为[1,5,100,100]分别表示batch_size,in_channels,width,height

(2)输出的张量信息为[1,10,98,98]分别表示batch_size,out_channels,width’,height’,其中width’,height’表示卷积后的每个通道的新尺寸大小

(3)conv_layer.weight.shape的输出结果为[10, 5, 3, 3],分表表示out_channels,in_channels,kernel_size ,kernel_size ,可以看到与上面的公式m * n * k1 * k2一致。

总结:

1:输入通道个数 等于 卷积核通道个数

2:卷积核个数 等于 输出通道个数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/86235.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

怎么在线制作思维导图?分享几个好用的方法和注意事项

思维导图是一种非常有用的工具,它可以帮助我们整理和梳理思路,提高学习和工作效率。现在,越来越多的人开始使用在线工具来制作思维导图,因为它们不仅方便易用,而且可以随时随地进行编辑和共享。本文将介绍几个好用的在…

封装公共el-form表单(记录)

1.公共表单组件 //commonForm.vue <script> import {TEXT,SELECT,PASSWORD,TEXTAREA,RADIO,DATE_PICKER } from /conf/uiTypes import { deepClone } from /utils export default {name: GFormCreator,props: {config: { // title/itemstype: Object,required: true}}…

视频云存储/安防监控视频智能分析网关V3:占道经营功能详解

违规占道经营者经常会在人流量大、车辆集中的道路两旁摆摊&#xff0c;导致公路交通堵塞&#xff0c;给居民出行的造成不便&#xff0c;而且违规占路密集的地方都是交通事故频频发生的区域。 TSINGSEE青犀视频云存储/安防监控视频/AI智能分析网关V3运用视频AI智能分析技术&…

关于 Camera 预览和录像画质不一样的问题分析

1、问题背景 基于之前安卓平台的一个项目&#xff0c;客户有反馈过一个 Camera app 预览的效果&#xff0c;和录像效果不一致的问题。 这里的预览是指打开 Camera app 后直接出图的效果&#xff1b;录像的效果则是指打开 Camera app 开启录像功能&#xff0c;录制一段视频&…

高中信息技术教资考试模拟卷(22下)

2022 年下半年全国教师资格考试模考卷一 &#xff08;高中信息技术&#xff09; 一、单项选择题&#xff08;本大题共 15 小题&#xff0c;每小题 3 分&#xff0c;共 45 分&#xff09; 1.2006 年 10 月 25 日&#xff0c;深圳警方成功解救出一名被网络骗子孙某…

webassembly003 GGML Tensor Library part-1

GGML ggml的函数 可以看到官方示例项目仅依赖于#include "ggml/ggml.h"&#xff0c; #include "common.h"&#xff0c;可以阅读ggml.h获取ggml的使用帮助 函数解释注释ggml_tensor多维张量按行主顺序存储。ggml_tensor结构包含每个维度中元素数&#xf…

【腾讯云 Cloud Studio 实战训练营】从零开始搭建一个数据大屏

文章目录 前言得到什么?使用Cloud Studio登录Cloud Studio登录方式Cloud Studio 功能介绍项目创建配置描述新建工作空间绑定Coding创建仓库绑定coding创建项目项目空间 项目搭建nuxt 脚手架Cloud Studio 安装插件nuxt初始项目预览问题描述 下载Datav 并体验页面结构展示 获取基…

PostgreSQL命令行工具psql常用命令

1. 概述 通常情况下操作数据库使用图形化客户端工具&#xff0c;在实际工作中&#xff0c;生产环境是不允许直接连接数据库主机&#xff0c;只能在跳板机上登录到Linux服务器才能连接数据库服务器&#xff0c;此时就需要使用到命令行工具。psql是PostgreSQL中的一个命令行交互…

SSL证书申请

DV SSL证书申请需要多久&#xff1f; DV SSL证书无需验证所有者资质资料&#xff0c;审核流程相对简单&#xff0c;因此可快速签发。但部分域名信息可能会触发不同等级的安全审查机制&#xff0c;必要时需要人工介入进行审查签发&#xff0c;因此&#xff0c;SSL证书签发时间可…

LC-1267. 统计参与通信的服务器(枚举 + 计数)

1267. 统计参与通信的服务器 中等 这里有一幅服务器分布图&#xff0c;服务器的位置标识在 m * n 的整数矩阵网格 grid 中&#xff0c;1 表示单元格上有服务器&#xff0c;0 表示没有。 如果两台服务器位于同一行或者同一列&#xff0c;我们就认为它们之间可以进行通信。 请…

基于PyTorch深度学习遥感影像地物分类与目标检测、分割及遥感影像问题深度学习优化

我国高分辨率对地观测系统重大专项已全面启动&#xff0c;高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成&#xff0c;将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB&#xff0c;遥感大数据时…

多图详解VSCode搭建Java开发环境

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…