股票预测和使用LSTM(长期-短期-记忆)的预测

一、说明

        准确预测股市走势长期以来一直是投资者和交易员难以实现的目标。虽然多年来出现了无数的策略和模型,但有一种方法最近因其能够捕获历史数据中的复杂模式和依赖关系而获得了显着的关注:长短期记忆(LSTM)。利用深度学习的力量,LSTM 提供了一种很有前途的途径,可以深入了解股票市场的不可预测性。在本文中,我们将深入研究基于LSTM的股票市场预测领域,并探讨这种创新方法如何有可能改变投资策略。

成功分析和预测后的绘图预测。

成功分析和预测后的绘图预测。

        LSTM的核心是递归神经网络(RNN)的变体,专门用于解决困扰传统RNN的梯度消失问题。梯度消失问题是指网络中早期层的梯度变得越来越小,阻碍了它们捕获长期依赖性的能力的现象。LSTM 通过整合存储单元、门和精心设计的连接来克服这一限制,使其能够在较长的时间间隔内有选择地保留和传播信息。这种独特的架构使 LSTM 模型能够捕获顺序数据中错综复杂的时间关系,使其特别适合预测时间序列数据,例如股票价格。

二、LSTM记忆网络

        要了解更多回合 LSTM ,请访问 :

了解长短期记忆 (LSTM) 算法

LSTM 算法是帮助机器理解和预测复杂数据的强大工具。了解 LSTM 如何适用于机器学习...

        让我们来看看我们的股票数据分析和预测。

2.1 导入所需库

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import LSTM
import math
from sklearn.metrics import mean_squared_error

        在这里,我们导入了熊猫,用于绘图的matplotlib,用于预处理的numpy,sklearn用于预处理,尺度调整和误差计算,以及用于模型构建的张量流。

2.2 我移植数据集

        您可以在以下 GitHub 存储库中找到我使用的数据集。

GitHub - mwitiderrick/stockprice: Stock Price Prediction 教程的数据和笔记本

股票价格预测教程的数据和笔记本 - GitHub - mwitiderrick/stockprice:数据和笔记本...

github.com

df = pd.read_csv('D:/stockprice-master/NSE-TATAGLOBAL.csv')
df.head()

三、数据分析

df2 = df.reset_index()['Close']
plt.plot(df2)

图表显示数据集中的库存流

我们将在收盘价列上进行股票预测。

3.1 数据预处理

scaler = MinMaxScaler()
df2 = scaler.fit_transform(np.array(df2).reshape(-1,1))
df2.shape

(2035, 1)

在这里,我们缩小 (0,1) 之间的值。

3.2 训练-测试拆分

train_size = int(len(df2)*0.65)
test_size = len(df2) - train_size
train_data,test_data = df2[0:train_size,:],df2[train_size:len(df2),:1]

        在这里,我们获取了 65% 的数据用于训练,其余 35% 用于测试。

def create_dataset(dataset, time_step = 1):dataX,dataY = [],[]for i in range(len(dataset)-time_step-1):a = dataset[i:(i+time_step),0]dataX.append(a)dataY.append(dataset[i + time_step,0])return np.array(dataX),np.array(dataY)

        创建一个函数作为 create_dataset(),它根据我们采取的时间步长将数据集分成 2 个。第一个数据集,即;dataX 将值作为其输入,第二个数据集 dataY 将值作为输出。基本上,它从上述数据集创建一个数据集矩阵。

# calling the create dataset function to split the data into 
# input output datasets with time step 100
time_step = 100
X_train,Y_train =  create_dataset(train_data,time_step)
X_test,Y_test =  create_dataset(test_data,time_step)
# checking values
print(X_train.shape)
print(X_train)
print(X_test.shape)
print(Y_test.shape)

(1221, 100)
[[0.62418301 0.62214052 0.62622549 ...0.83455882 0.86213235 0.85273693]
[0.62214052 0.62622549 0.63378268 ...0.86213235 0.85273693 0.87111928]
[0.62622549 0.63378268 0.62234477 ...0.85273693 0.87111928 0.84497549]
...
[0.34517974 0.31781046 0.33047386 ...0.2816585 0.27001634 0.26531863]
[0.31781046 0.33047386 0.32128268 ...0.27001634 0.26531863 0.27389706]
[0.33047386 0.32128268 0.34007353 ...0.26531863 0.27389706 0.25347222]](612, 100)(612,)

四、创建和拟合 LSTM 模型

model = Sequential()
model.add(LSTM(50,return_sequences = True,input_shape = (X_train.shape[1],1)))
model.add(LSTM(50,return_sequences = True))
model.add(LSTM(50))
model.add(Dense(1))
model.compile(loss = 'mean_squared_error',optimizer = 'adam')

        在这里,我们添加了 4 层 LSTM,其中 1 层作为输入层,2 层作为隐藏层,1 层作为输出层作为 Dense。 在前 3 层中,我们取了 50 个神经元和 个用于输出。

        我们使用亚当优化器编译模型,该优化器将使用均方误差计算损失。

model.summary()

model.fit(X_train,Y_train,validation_data = (X_test,Y_test),epochs = 100,batch_size = 64,verbose = 1)

在这里,该模型已经训练了 100 个 epoch,每个 epoch 的批大小为 64。

五、预测和检查性能矩阵

train_predict = model.predict(X_train)
test_predict = model. Predict(X_test)
# transform to original form
train_predict = scaler.inverse_transform(train_predict)
test_predict = scaler.inverse_transform(test_predict)

        当我们在 0 和 1 中缩小数据集的值时,我们需要再次反转变换,以便在图上获得准确的预测值,因此,这里我们反转两个预测的变换。

        现在是计算rmse性能矩阵的时候了。

print(math.sqrt(mean_squared_error(Y_train,train_predict)))
print(math.sqrt(mean_squared_error(Y_test,test_predict)))

166.74853517776896
116.51567464682968

在这里,计算的两个值都非常接近,即;差值小于 50,表示模型精度良好

六 图形绘制

look_back = 100
trainPredictPlot = np.empty_like(df2)
trainPredictPlot[:,:] = np.nan
trainPredictPlot[look_back : len(train_predict)+look_back,:] = train_predict

        回看变量采用当前值后面的值数,即;记住与 LSTM 相同的前 100 个值。在这里,每次绘制图形时,trainPredictionPlot 都会在它们后面取 100 个值并绘制它。绘图从前 100 个值开始,一直到火车预测的长度 + 回溯,即 100。

testPredictPlot = np.empty_like(df2)
testPredictPlot[:,:] = np.nan
testPredictPlot[len(train_predict)+(look_back)*2 + 1 : len(df2) - 1,:] = test_predict

        TestPredictionPlot 也是如此,但这次它采用Train_predict旁边的值。这里回顾将从火车预测结束的地方开始。

plt.plot(scaler.inverse_transform(df2))
plt.plot(trainPredictPlot)
plt.plot(testPredictPlot)
plt.show()

        在这里,橙色是TrainPredictionPlot,绿色是TestPredictionPplot,蓝色是实际数据集。因此,我们可以看到我们的模型很好地预测了股票价格。

        该模型仅用于学习目的,不建议用于任何未来的投资。普拉吉瓦尔·乔汉

七、结论

        总之,利用长期短期记忆(LSTM)进行股票市场预测代表了财务预测领域的重大飞跃。这种基于深度学习力量的创新方法展示了其捕获历史股票市场数据中复杂模式和依赖关系的潜力。通过将LSTM模型纳入投资策略,交易者和投资者可以在驾驭股票市场的不可预测性中获得宝贵的优势。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/86333.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker部署项目

相关系列文章: 1、DockerHarbor私有仓库快速搭建 2、DockerJenkinsHarbor 3、Docker安装Mysql、Redis、nginx、nacos等环境 1、jenkins构建前端并上传服务器 在这篇文章中(DockerJenkinsHarbor)未完成前端的远程部署,这里对前端vue工程进行编译打包并上…

springCloud整合Zookeeper的时候调用找不到服务

SpringCloud整合Zookeeper的时候调用找不到服务 首先,我们在注册中心注册了这个服务: 然后我们使用RestTemplate 调用的时候发现失败了:找不到这个服务: 找了很多资料发现这个必须要加上负载才行 BeanLoadBalanced //负载publi…

推荐前 6 名 JavaScript 和 HTML5 游戏引擎

推荐:使用 NSDT场景编辑器 助你快速搭建3D应用场景 事实是,自从引入JavaScript WebGL API以来,现代浏览器具有直观的功能,使它们能够渲染更复杂和复杂的2D和3D图形,而无需依赖第三方插件。 你可以用纯粹的JavaScript开…

MySQL安装记录

背景 Windows系统重装了, 想恢复一下之前的MySQL环境, 而且本地数据库也是比较常用的, 刚好本次也在安装, 做一个简单的记录. 也算是自己的学习记录输出. 遇到的问题当然也可以同时记录在这里, 方便后 续回顾. 资料包 百度网盘 // TODO 估计放了也会被CSDN屏蔽, 这里就不放…

【Linux的成长史】Linux的发展史

🎬 博客主页:博主链接 🎥 本文由 M malloc 原创,首发于 CSDN🙉 🎄 学习专栏推荐:LeetCode刷题集 数据库专栏 初阶数据结构 🏅 欢迎点赞 👍 收藏 ⭐留言 📝 如…

安防行业深度报告:技术创新与格局重构

前言:Hello大家好,我是小哥谈。通过运用云计算、人工智能等新技术,安防行业正经历从传统安防向 AI 智慧安防转型升级的过程。这种升级将改变传统安防只能事后查证、人工决策的劣势,使得全程监控、智能决策成为可能。通过运用后端云…

C++ - C++11

文章目录 1. std::initializer_list2. decltype3. 左值引用和右值引用4. 完美转发(模板中的&&万能引用)5. 类的新功能6. 可变参数模板7. lambda表达式8. 包装器 1. std::initializer_list 内置类型 int main() {/* 内置类型 */int x1 1;int x2 { 2 };int x3{ 3 };i…

OVRL-V2: A simple state-of-art baseline for IMAGENAV and OBJECTNAV 论文阅读

论文信息 题目:OVRL-V2: A simple state-of-art baseline for IMAGENAV and OBJECTNAV 作者:Karmesh Yadav, Arjun Majumdar, Ram Ramrakhya 来源:arxiv 时间:2023 代码地址: https://github.com/ykarmesh…

按软件开发阶段的角度划分:单元测试、集成测试、系统测试、验收测试

1.单元测试(Unit Testing) 单元测试,又称模块测试。对软件的组成单位进行测试,其目的是检验软件基本组成单位的正确性。测试的对象是软件里测试的最小单位:模块。 测试阶段:编码后或者编码前(…

八大算法思想

算法和数据结构一直以来都是程序员的基本内功,可以说没有数据结构的基础建设和算法加持,也就没有这将近八十年的信息革命时代。数据结构可以看作是算法实现的容器,通过一系列特殊结构的数据集合,能够将算法更为高效而可靠地执行起…

【100天精通python】Day46:python网络编程基础与入门

目录 专栏导读 1 网络编程的基础 2. 基本概念和协议 2.1 计算机网络基础 2.2 网络协议、IP地址、端口号 2.3 常见网络协议 3. 套接字编程 3.1 套接字的基本概念 3.2 套接字的基本操作 3.3 套接字通信模型和方法:send、recv 3.3.1 TCP通信模型 3.3.2 U…

原生微信小程序使用 wxs;微信小程序使用 vant-weapp组件

1.原生微信小程序使用 wxs 1.内嵌 WXS 脚本 2. 定义外链 wxs 3. 使用外连wxs 在这里插入图片描述 2. 微信小程序使用 vant weapp 1.安装步骤 2. 安装包管理(package.json)文件的方法 操作顺序 :文档地址 如果使用 typescript 需要操作步骤3,否则不…