ESP32 学习笔记(九)舵机实验

news/2025/3/9 22:39:38/文章来源:https://www.cnblogs.com/abyssdawn/p/18679240

概念

舵机是一种位置(角度)伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。舵机只是一种通俗的叫法,其本质是一个伺服电机。

舵机有很多规格,但所有的舵机都有外接三根线,分别用棕、红、橙三种颜色进行区分,由于舵机品牌不同,颜色也会有所差异,棕色为接地线,红色为电源正极线,橙色为信号线。只要通过信号线给予规定的控制信号即可实现舵机码盘的转动。

2025-01-18T15:07:08.png

舵机的工作原理是由接收机或者单片机发出信号给舵机,其内部有一个基准电路,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。经由电路板上的 IC 判断转动方向,再驱动无核心马达开始转动,透过减速齿轮将动力传至摆臂,同时由位置检测器送回信号,判断是否已经到达定位。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。一般舵机旋转的角度范围是 0 度到 180 度,当然也有 0 度到 360 度。

舵机的转动的角度是通过调节 PWM(脉冲宽度调制)信号的占空比来实现的,标准 PWM(脉冲宽度调制)信号的周期固定为 20ms(50Hz),理论上脉宽分布应在 1ms 到 2ms 之间,但是,事实上脉宽可由 0.5ms 到 2.5ms 之间,脉宽和舵机的转角 0°~180° 相对应。有一点值得注意的地方,由于舵机牌子不同,对于同一信号,不同牌子的舵机旋转的角度也会有所不同。

电路设计

2025-01-18T15:07:59.png

程序设计

LEDC 输出 PWM 信号

// 1/20 秒,50Hz 的频率,20ms 的周期,这个变量用来存储时钟基准。
#define FREQ        50     
// 通道(高速通道(0 ~ 7)由 80MHz 时钟驱动,低速通道(8 ~ 15)由 1MHz 时钟驱动。) 
#define CHANNEL     0    
// 分辨率设置为 8,就是 2 的 8 次方,用 256 的数值来映射角度。   
#define RESOLUTION  8      
// 定义舵机 PWM 控制引脚。 
#define SERVO       13      //定义函数用于输出 PWM 的占空比
int calculatePWM(int degree) 
{ //20ms 周期内,高电平持续时长 0.5-2.5 ms,对应 0-180 度舵机角度。//对应 0.5ms(0.5ms/(20ms/256))float min_width = 0.6 / 20 * pow(2, RESOLUTION);//对应 2.5ms(2.5ms/(20ms/256))float max_width = 2.5 / 20 * pow(2, RESOLUTION);if (degree < 0)degree = 0;if (degree > 180)degree = 180;//返回度数对应的高电平的数值return (int)(((max_width - min_width) / 180) * degree + min_width); 
}void setup()
{// 用于设置 LEDC 通道的频率和分辨率ledcSetup(CHANNEL, FREQ, RESOLUTION);// 将通道与对应的引脚连接ledcAttachPin(SERVO, CHANNEL);          
}void loop()
{for (int i = 0; i <= 180; i += 10){// 输出PWM,设置 LEDC 通道的占空比。ledcWrite(CHANNEL, calculatePWM(i)); delay(1000);}  
}

使用第三方库 ESP32Servo 控制舵机

#include <ESP32Servo.h>#define SERVO_PIN   13
#define MAX_WIDTH   2500
#define MIN_WIDTH   500// 定义 servo 对象
Servo my_servo;void setup() {// 分配硬件定时器ESP32PWM::allocateTimer(0);// 设置频率my_servo.setPeriodHertz(50);// 关联 servo 对象与 GPIO 引脚,设置脉宽范围my_servo.attach(SERVO_PIN, MIN_WIDTH, MAX_WIDTH);
}void loop() {my_servo.write(180);delay(1000);my_servo.write(0);delay(1000);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/871607.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(原创)[开源][.Net Standard 2.0] SimpleMMF (进程间通信框架)更新 v1.1,极低CPU占用

一、前言 在上一篇 (原创)[.Net] 进程间通信框架(基于共享内存)——SimpleMMF 中,发布了v1.0版,最大的问题是:CPU占用较高,至少40-50%。 这既与我的开发水平有关,也与SimpleMMF诞生环境有关,这个主要是用在数字孪生各软件之间同步数据,而部署软件的工作站性能都强悍…

Elasticsearch 笔记

目录ES 相关概念概述核心概念1)索引 index2)类型 type3) 字段 Filed4)映射 mapping5)文档 document6)集群 cluster7)节点 node8)分片和复制 shards & replicasDocker 中安装 ElasticSearch下载 ElasticSearch 和 Kibana配置启动 ElasticSearch单节点多节点启动开启 …

VMware Avi Load Balancer 31.1.1 发布 - 多云负载均衡平台

VMware Avi Load Balancer 31.1.1 发布 - 多云负载均衡平台VMware Avi Load Balancer 31.1.1 发布 - 多云负载均衡平台 应用交付:多云负载均衡、Web 应用防火墙和容器 Ingress 服务 请访问原文链接:https://sysin.org/blog/vmware-avi-load-balancer-31/ 查看最新版。原创作品…

Angular 中依赖注入问题造成 Observable 订阅不更新

这是园子博客后台从 angular 15 升级到 angular 19 后遇到的一个问题。博客后台「随笔 」的侧边栏会显示随笔的分类列表 ,通过这个列表的上下文菜单可以修改分类名称,升级后测试时发现一个问题,修改分类名称后分类列表没有随之更新这是园子博客后台从 angular 15 升级到 ang…

极紫外光刻掩模上三维图案的严格模拟(下)

1D线掩模:全3D计算域 首先,使用包含吸收体结构和多层反射镜的3D计算域重新审视EUV线掩模。图5显示了对几何体进行离散化的网格(使用网格生成器JCMgeo自动生成)。对于三维设置,网格由棱柱形元素组成(而不是二维设置中的三角形元素)。使用不同的空间网格对相同的物理设置进…

极紫外光刻掩模上三维图案的严格模拟(上)

对具有二维周期性吸收体图案的极紫外光刻掩模的光散射进行了模拟。在一项详细的收敛研究中,表明在相对较大的3D计算域以及存在侧壁角度和拐角圆角的情况下,可以获得准确的结果。 材料和参数设置 所研究的结构由多层反射镜上的吸收器堆叠组成(共120层)。图1显示了几何形状的…

如何在M芯片的Mac上爽玩原神

如何在M芯片的Mac上爽玩原神 【热点速递】苹果震撼发布全新M4 Mac mini,国补福利下惊喜价如何在M芯片的Mac上爽玩原神【热点速递】苹果震撼发布全新M4 Mac mini,国补福利下惊喜价仅约3500元!这不仅是一次办公体验的全新升级,更是对高效能与性价比完美融合的一次致敬。想象一…

macOS安装软件过程中常见几种报错的解决办法

macOS安装软件过程中常见几种报错的解决办法 对于刚使用 macOS 或者在更新系统后尝试运行应用对于刚使用 macOS 或者在更新系统后尝试运行应用时遇到问题的用户,可能会看到以下几种错误提示:xxx已损坏,无法打开,你应该将它移到废纸篓打不开 xxx,因为它来自身份不明的开发者…

我来告诉你怎么在macOS上畅玩金铲铲之战

我来告诉你怎么在macOS上畅玩金铲铲之战 ❝ 天选福星,灵蛇献瑞,《金铲铲之战》“天选福星”赛季好我来告诉你怎么在macOS上畅玩金铲铲之战天选福星,灵蛇献瑞,《金铲铲之战》“天选福星”赛季好运上线!请接收这份来自《金铲铲之战》的新春邀约——“天选福星”正式回归,羁…

4本书推荐《AI芯片开发核心技术详解》、《智能汽车传感器:原理设计应用》、《TVM编译器原理与实践》、《LLVM编译器原理与实践》,谢谢

4本书推荐《AI芯片开发核心技术详解》、《智能汽车传感器:原理设计应用》、《TVM编译器原理与实践》、《LLVM编译器原理与实践》由清华大学出版社资深编辑赵佳霓老师策划编辑的新书《AI芯片开发核心技术详解》已经出版,京东、淘宝天猫、当当等网上,相应陆陆续续可以购买。该…

Cain的2024小记

2024の总结在清水中放一块糖,不会太甜 但放一勺醋,就会很酸 人不能因为一件事高兴一整年 却能因为一个创伤郁郁终身 痛苦给人的刺激总是远远大于快乐 所以人们宁可不得到,也不愿失去 渐渐的 不喜不悲又到了一年一度的破壳日,祝我生日快乐的同时,写下拖延许久的年度总结,剖…

【Windows内核】早期级联注入:Windows 进程创建、Early bird APC 注入和 EDR 预加载

一、介绍 在这篇博客文章中,我们介绍了一种名为早期级联注入的新型进程注入技术,探讨了 Windows 进程创建,并识别了几种端点检测和响应系统(EDR)如何初始化其进程内检测能力。这种新的早期级联注入技术针对进程创建的用户模式部分,结合了众所周知的 Early bird APC 注入技…