计算机毕设 基于机器视觉的二维码识别检测 - opencv 二维码 识别检测 机器视觉

文章目录

  • 0 简介
  • 1 二维码检测
  • 2 算法实现流程
  • 3 特征提取
  • 4 特征分类
  • 5 后处理
  • 6 代码实现
  • 5 最后

0 简介

今天学长向大家介绍一个机器视觉的毕设项目,二维码 / 条形码检测与识别

基于机器学习的二维码识别检测 - opencv 二维码 识别检测 机器视觉

1 二维码检测

物体检测就是对数字图像中一类特定的物体的位置进行自动检测。基本的检测框架有两种:

一种是以滑动窗口为单位对图像进行扫描,对扫描所得的每个子图像提取特征,并用学习到的分类器来分类该特征并且判断该子图像是否为所检测的特定物体。对象检测的一个问题是,对象在图片中的位置和尺度是未知的。算法被要求能够检测各种不同位置、不同大小的对象,这样的特性被称为位置无关性和尺度无关性。为了达到这样的特性,常见的方法是使用多尺度框架,即:通过缩放原始图像,产生一组大小不同的图像序列,然后在序列的每幅图像中都使用固定尺寸 W×H 的滑动窗口,检测算法将判断每次滑动窗口所截取的图像子窗口是否存在目标对象。滑动窗口解决了位置无关性;而图像序列中存在至少一幅图像,其包含的目标对象的尺度符合滑动窗口的尺度,这样一个图像金字塔序列解决了尺度无关性。

另一种则是在整幅图像上首先提取兴趣点,然后仅对提取出来的兴趣点分类。

因此学长把物体检测方法分为基于滑动窗口的物体检测和基于兴趣点的物体检测两类。

无论是哪种做法,整个过程都可以分为特征提取和特征分类这两个主要阶段。也就是说,物体检测的主要问题是使用什么样的特征和使用什么样的分类器。

物体检测的难点在于如何用有限的训练集来学习到鲁棒的、可以适用到各种情况下的分类器。这里所说的各种情况包括有:图像中物体的大小不同;光照条件的差异所引起的图像明暗的不同;物体在图像中可能存在的旋转和透视情况;同类物体间自身存在的差异。

这里学长以定位二维码 / 条形码为例,简述基于机器学习实现物体检测的大致算法流程。

2 算法实现流程

算法流程图如下图所示:

在这里插入图片描述

我们先把输入图像分成 25×25 的图像子块。把图像子块作为特征提取和特征分类这两个模块的基本处理对象,即对图像子块进行纹理特征提取,特征分类时判定当前处理的图像子块是否属于二维条形码的一部分

在这里插入图片描述

在特征提取模块中,我们使用纹理特征提取算法从原始输入图像中提取出多分辨率直方图特征、局部二值模式特征和边缘方向直方图特征,这三种纹理特征的表达形式均为一维数组。我们将这 3 个数组连接为 1 个一维数组,作为后续分类模块的输入。

在特征分类时,我们希望保留所有属于二维条形码的图像子块,同时去除所有属于背景的图像子块。在该模块中,我们使用了自适应 Spatialboost 算法。

下图为经过这步处理后的理想输出结果,图中被标记的小方块表示他们属于二维条形码的一部分。

在这里插入图片描述

3 特征提取

图像的纹理特征可以描述物体特有的属性,用以区别其他物体。纹理特征总体可分为空域和频域两大类。在本文算法中,我们采用的纹理特征均属于空域的纹理特征,也是局部特征,它们分别是多分辨率直方图特征、局部二值模式特征和边缘方向直方图特征。

多分辨率直方图特征具备旋转无关的特点。这种纹理特征保留了灰度直方图特征计算简单和保存方便的特点。同时它又可以描述纹理的局部信息,弥补了传统的灰度直方图特征的缺点。

局部二值模式特征是一种计算复杂度较低的局部特征,它具有明暗无关和旋转无关的特点。 边缘方向直方图特征与全局的光照变化是无关的,它可以提取出二维条形码纹理的几何特点。

4 特征分类

学长开发的算法所使用的分类器为自适应 Spatialboost 算法,这是对 Spatialboost 算法的一个改进。使用这个分类器是由二维条形码的特点以及我们算法框架的特点所决定的。由于我们把原始输入图像分为若干大小固定的图像子块,属于二维条形码的图像子块在空间上有很强的关联性,或者说这些属于二维条形码的图像子块都是紧密相邻的。同时由于图像子块的尺寸不大,它所包含的信息量相对较少,有的时候就很难把属于二维条形码的图像子块和属于背景的图像子块区分开(它们在特征空间上可能重叠)。如果我们可以利用子块在空间上的联系,把空间信息加入到分类器中,将有利于提高分类器的准确率。

适应 Spatialboost 算法可以同时利用纹理特征以及子块在空间上的联系,在训练过程中,将纹理特征和空间信息自适应的结合起来训练分类器。这样,当前处理的子块的分类结果不仅依赖于它自己的纹理特征,还和它周围子块的分类结果密切相关。当属于背景的图像子块的纹理特征很接近于属于二维条形码的图像子块时,我们还是可以依靠和它相邻的背景子块来对它做出正确的分类。

5 后处理

经过特征提取和特征分类两个模块后,我们得到了对图像子块的分类结果,但最后我们期望得到的是对二维条形码的包围盒。在我们的设置下,自适应Spatialboost 分类器对背景子块的分类相当严格,此时对属于二维条形码的图像子块会有部分漏检发生,

在这里插入图片描述

因此在后处理模块中,我们先使用一种自适应聚类算法,对分类后的结果进一步改进,来精确的覆盖整个二维条形码。特征分类后定位到的子块的大小为 25×25,我们把这些子块再划分为 10×10 的小方块。接着以得到的 10×10 的子块为种子,用子块灰度值的方差为衡量标准往外聚类,聚类时的阈值设定为:

在这里插入图片描述

其中 M 是聚类开始时作为种子的子块的个数,k 为调整系数,在本文算法中 k设置为 0.5,Var 和 Mean 分别表示子块灰度值的均值和方差。由公式(3-1)可知,每幅图像的聚类阈值是自适应的计算得来的。聚类开始时首先从种子子块出发,计算它们周围的子块的灰度值方差,如果大于聚类阈值就把它标识为属于二维条形码,重复这个过程直到周围再没有子块符合聚类条件。图 3-5 是聚类算法的部分结果,第一行的图像是特征分类后的结果,准确的定位到了一部分二维条形码,但是没有完全的覆盖整个二维条形码,不利于我们输出最后的定位包围盒。第二行为聚类后的结果,可以看到小块几乎完全覆盖了整个二维条形码,此时再把这些小块合并为一个平行四边形就很方便了。

在这里插入图片描述

聚类后定位出来的小块基本上覆盖了整个二维条形码,最后我们只需要把定位出的小包围盒合并为大包围盒,并输出最后的定位结果。整个后处理流程见图

在这里插入图片描述

6 代码实现

这里演示条形码的检测效果:
在这里插入图片描述

关键部分代码实现:

# import the necessary packages
import numpy as np
import argparse
import cv2# construct the argument parse and parse the arguments
# ap = argparse.ArgumentParser()
# ap.add_argument("-i", "--image", required = True, help = "path to the image file")
# args = vars(ap.parse_args())# load the image and convert it to grayscale
image = cv2.imread('./images/2.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# compute the Scharr gradient magnitude representation of the images
# in both the x and y direction
gradX = cv2.Sobel(gray, ddepth = cv2.CV_32F, dx = 1, dy = 0, ksize = -1)
gradY = cv2.Sobel(gray, ddepth = cv2.CV_32F, dx = 0, dy = 1, ksize = -1)# subtract the y-gradient from the x-gradient
gradient = cv2.subtract(gradX, gradY)
gradient = cv2.convertScaleAbs(gradient)# blur and threshold the image
blurred = cv2.blur(gradient, (9, 9))
(_, thresh) = cv2.threshold(blurred, 225, 255, cv2.THRESH_BINARY)# construct a closing kernel and apply it to the thresholded image
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (21, 7))
closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)# perform a series of erosions and dilations
closed = cv2.erode(closed, None, iterations = 4)
closed = cv2.dilate(closed, None, iterations = 4)# find the contours in the thresholded image, then sort the contours
# by their area, keeping only the largest one
(cnts, _) = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
c = sorted(cnts, key = cv2.contourArea, reverse = True)[0]# compute the rotated bounding box of the largest contour
rect = cv2.minAreaRect(c)
box = np.int0(cv2.boxPoints(rect))

5 最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/87286.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Netty核心源码解析(三)--NioEventLoop

NioEventLoop介绍 NioEventLoop继承SingleThreadEventLoop,核心是一个单例线程池,可以理解为单线程,这也是Netty解决线程并发问题的最根本思路--同一个channel连接上的IO事件只由一个线程来处理,NioEventLoop中的单例线程池轮询事件队列,有新的IO事件或者用户提交的task时便执…

在kaggle中用GPU使用CGAN生成指定mnist手写数字

文章目录 1项目介绍2参考文章3代码的实现过程及对代码的详细解析独热编码定义生成器定义判别器打印我们的引导信息模型训练迭代过程中生成的图片损失函数的变化 4总结5 模型相关的文件 1项目介绍 在GAN的基础上进行有条件的引导生成图片cgan 2参考文章 GAN实战之Pytorch 使用…

基于mysql5.7制作自定义的docker镜像,适用于xxl-job依赖的数据库,自动执行初始化脚本(ddl语句和dml语句)

一、背景 xxl-job-admin依赖mysql数据库,且需执行初始化脚本,包括ddl和dml语句。 具体的步骤总结如下: 1、新建数据库xxl_job2、创建mysql表table3、执行dml语句,包括新建admin用户及密码,创建执行器和任务。 毫无疑…

Android App的设计规范

Android App 设计规范是为开发者和设计师提供的一系列准则和建议,以确保应用在 Android 设备上的外观、交互和用户体验保持一致。以下是一些常见的 Android App 设计规范要点,希望对大家有所帮助。北京木奇移动技术有限公司,专业的软件外包开…

基于SSM+vue框架的个人博客网站源码和论文

基于SSMvue框架的个人博客网站源码和论文061 开发工具:idea 数据库mysql5.7 数据库链接工具:navcat,小海豚等 技术:ssm (设计)研究背景与意义 关于博客的未来:在创办了博客中国(blogchina)、被誉为“…

Python爬虫实战案例——第三例

文章中所有内容仅供学习交流使用,不用于其他任何目的!严禁将文中内容用于任何商业与非法用途,由此产生的一切后果与作者无关。若有侵权,请联系删除。 起点中文网月票榜加密字体处理 字体加密的原理:就是将一种特定的…

通俗理解DDPM到Stable Diffusion原理

代码1:stabel diffusion 代码库代码2:diffusers 代码库论文:High-Resolution Image Synthesis with Latent Diffusion Models模型权重:runwayml/stable-diffusion-v1-5 文章目录 1. DDPM的通俗理解1.1 DDPM的目的1.2 扩散过程1.3 …

PHPEXCEL 导出excel

$styleArray [alignment > [horizontal > Alignment::HORIZONTAL_CENTER,vertical > Alignment::VERTICAL_CENTER],];$border_style [borders > [allborders > [style > \PHPExcel_Style_Border::BORDER_THIN ,//细边框]]];$begin_date $request->beg…

接口经典题目

​ White graces:个人主页 🙉专栏推荐:《Java入门知识》🙉 🙉 内容推荐:继承与组合:代码复用的两种策略🙉 🐹今日诗词:人似秋鸿来有信,事如春梦了无痕。🐹 目录 &…

Go 第三方库引起的线上问题、如何在线线上环境进行调试定位问题以及golang开发中各种问题精华整理总结

Go 第三方库引起的线上问题、如何在线线上环境进行调试定位问题以及golang开发中各种问题精华整理总结。 01 前言 在使用 Go 语言进行 Web 开发时,我们往往会选择一些优秀的库来简化 HTTP 请求的处理。其中,go-resty 是一个被广泛使用的 HTTP 客户端。…

win10家庭版远程桌面补丁_rdp wrapper

RDP Wrapper Library 就是可以帮你在 Windows 7、Windows 8、Windows 10 家庭版中打开远程桌面的工具。 1、把电脑上打开的安全软件与杀毒软件都关掉,因为这个远程桌面补丁会修改系统文件,所以安全软件可能会拦截。 2、下载RDP Wrapper Library补丁压缩…

windows安装mysql8.0.34的压缩包

文章目录 目录 文章目录 前言 一、下载安装包zip格式 二、使用步骤 总结 前言 一、下载安装包zip格式 MySQL :: Begin Your Download 二、使用步骤 解压缩之后在解压之后的目录里创建data和my.ini my.ini内容 # 设置mysql客户端连接服务端时默认使用的端口 port3306#默认…