目录
- SEABO: A Simple Search-Based Method for Offline Imitation Learning
- Reinforcement Learning Upside Down: Don't Predict Rewards -- Just Map Them to Actions
- Training Agents using Upside-Down Reinforcement Learning
- All You Need Is Supervised Learning: From Imitation Learning to Meta-RL With Upside Down RL
SEABO: A Simple Search-Based Method for Offline Imitation Learning
- arxiv:https://arxiv.org/abs/2402.03807
- GitHub:https://github.com/dmksjfl/SEABO
- 来源:有可能是师兄的新文章,ICLR 2024。
- 主要内容:
Reinforcement Learning Upside Down: Don't Predict Rewards -- Just Map Them to Actions
- arxiv:https://arxiv.org/abs/1912.02875
- 来源:曾经感兴趣的 upside down RL。
- 主要内容:
Training Agents using Upside-Down Reinforcement Learning
- arxiv:https://arxiv.org/abs/1912.02877
- 来源:曾经感兴趣的 upside down RL。
- 主要内容:
All You Need Is Supervised Learning: From Imitation Learning to Meta-RL With Upside Down RL
- arxiv:https://arxiv.org/abs/2202.11960
- 来源:好像也是关于 upside down RL。
- 主要内容: