A - Shuffled Equation
点击查看代码
void solve() {int a, b, c;std::cin >> a >> b >> c;if (a * b == c || a * c == b || b * c == a) {std::cout << "Yes\n";} else {std::cout << "No\n";}
}
B - Who is Missing?
点击查看代码
void solve() {int n, m;std::cin >> n >> m;std::set<int> s;for (int i = 0; i < m; ++ i) {int x;std::cin >> x;s.insert(x);}std::vector<int> ans;for (int i = 1; i <= n; ++ i) {if (!s.count(i)) {ans.push_back(i);}}std::cout << ans.size() << "\n";for (auto & x : ans) {std::cout << x << " \n"[x == ans.back()];}
}
C - Bib
题意:第\(i\)个人编号为\(q_i\),指向\(p_i\)。求编号为\(i\)的人指向的人的编号。
编号为\(q_i\)的人指向人的编号为\(q_{p_i}\)。
点击查看代码
void solve() {int n;std::cin >> n;std::vector<int> p(n), q(n);for (int i = 0; i < n; ++ i) {std::cin >> p[i];-- p[i];}for (int i = 0; i < n; ++ i) {std::cin >> q[i];-- q[i];}std::vector<int> ans(n);for (int i = 0; i < n; ++ i) {ans[q[i]] = q[p[i]];}for (int i = 0; i < n; ++ i) {std::cout << ans[i] + 1 << " \n"[i == n - 1];}
}
D - Doubles
题意:有\(n\)个骰子,每个骰子有几率投出一些数,求两个骰子骰出相同数的最大概率。
\(n\)比较小,直接枚举两个骰子,然后计算它们可以骰出来的相同数的概率和。
点击查看代码
void solve() {int n;std::cin >> n;const int N = 1e5 + 5;std::vector<int> k(n);std::vector<std::map<int, int> > cnt(n);for (int i = 0; i < n; ++ i) {std::cin >> k[i];for (int j = 0; j < k[i]; ++ j) {int x;std::cin >> x;++ cnt[i][x];}}double ans = 0;for (int i = 0; i < n; ++ i) {for (int j = i + 1; j < n; ++ j) {double sum = 0;for (auto & [x, y] : cnt[i]) {if (cnt[j].count(x)) {sum += 1.0 * y / k[i] * cnt[j][x] / k[j];}}ans = std::max(ans, sum);}}std::cout << std::fixed << std::setprecision(12);std::cout << ans << "\n";
}
E - Cables and Servers
题意:给你一个图,你可以改变某些边的连接端点使得整个图联通。
先求出每个联通块,然后每个联通块只需要\(size - 1\)条边,其中\(size\)是联通块的大小,那么其余的边是多余,可以用并查集求联通块和每个联通块多余的边。然后按顺序枚举所有联通块,记录前面联通块的可用边,和前面的联通块编号,每次先把前面联通块的边来连当前联通块,如果没有则用当前联通块的边尽可能连前面的联通块,模拟讨论一下就行,然后记得把没用过的边加进来,以及更新前面的联通块。
点击查看代码
struct DSU {std::vector<int> fa, cnt;DSU(int _n) {init(_n);}void init(int _n) {fa.assign(_n, 0);cnt.assign(_n, 1);std::iota(fa.begin(), fa.end(), 0);}int find(int x) {return x == fa[x] ? x : fa[x] = find(fa[x]);}bool merge(int x, int y) {x = find(x), y = find(y);if (x == y) {return false;}fa[y] = x;cnt[x] += cnt[y];return true;}bool same(int x, int y) {return find(x) == find(y);}int size(int x) {return cnt[find(x)];}
};void solve() {int n, m;std::cin >> n >> m;std::vector<std::pair<int, int> > edges(m);DSU d(n);std::vector<int> id;for (int i = 0; i < m; ++ i) {int u, v;std::cin >> u >> v;-- u, -- v;edges[i] = {u, v};if (!d.merge(u, v)) {id.push_back(i);}}std::vector<std::vector<int>> g(n);for (auto & i : id) {g[d.find(edges[i].first)].push_back(i);}std::vector<std::array<int, 3>> ans;std::vector<int> a, b;for (int i = 0; i < n; ++ i) {if (d.find(i) == i) {if (a.size()) {int j = a.back();a.pop_back();ans.push_back({j, edges[j].first, i});d.merge(i, d.find(edges[j].first));for (auto & j : g[i]) {a.push_back(j);}} else if (g[i].size()) {for (auto & j : g[i]) {while (b.size() && d.same(b.back(), i)) {b.pop_back();}if (!b.size()) {a.push_back(j);} else {ans.push_back({j, edges[j].first, b.back()});d.merge(b.back(), i);b.pop_back();}}b.push_back(i);} else {b.push_back(i);}}}std::cout << ans.size() << "\n";for (auto & [x, y, z] : ans) {std::cout << x + 1 << " " << y + 1 << " " << z + 1 << "\n";}
}
F - Insert
题意:\(n\)个数依次加入序列,第\(i\)个放到第\(p_i\)个,那么第\(p_i\)到\(i-1\)位置上的数都要往后移。求最终序列。
考虑从后往前做,那么最后一个数的位置是可以确定的。假设当前以及放好了\(i + 1\)到\(n\),现在在放\(i\),那么\(i\)要一直被小于等于\(p_i\)的往后退,这个过程中同时\(p_i\)也要变大。那么如何求\(p_i\)最后的位置?考虑二分,如果\(p_i + sum(1, mid - 1) >= mid\)那么\(p_i\)的位置一定大于等于\(mid\),这是具有单调性的,因为\(p_i\)实际上是被一步一步推着往后移的。
点击查看代码
template <class T>
struct Fenwick {int n;std::vector<T> tr;Fenwick(int _n) {init(_n);}void init(int _n) {n = _n;tr.assign(_n + 1, {});}void add(int x, T v) {for (int i = x; i <= n; i += i & -i) {tr[i] += v;}}T query(int x) {T res = 0;for (int i = x; i; i -= i & -i) {res += tr[i];}return res;}T sum(int l, int r) {return query(r) - query(l - 1);}
};void solve() {int n;std::cin >> n;std::vector<int> a(n + 1);for (int i = 1; i <= n; ++ i) {std::cin >> a[i];}Fenwick<int> tr(n);std::vector<int> ans(n + 1);for (int i = n; i >= 1; -- i) {int l = a[i], r = n;while (l < r) {int mid = l + r + 1 >> 1;if (a[i] + tr.query(mid - 1) >= mid) {l = mid;} else {r = mid - 1;}}int x = a[i] + tr.query(l - 1);tr.add(x, 1);ans[x] = i;}for (int i = 1; i <= n; ++ i) {std::cout << ans[i] << " \n"[i == n];}
}