为什么Raft算法是分布式系统的首选?

news/2025/2/22 13:09:46/文章来源:https://www.cnblogs.com/seven97-top/p/18723864

背景

当今的数据中心和应用程序在高度动态的环境中运行,为了应对高度动态的环境,它们通过额外的服务器进行横向扩展,并且根据需求进行扩展和收缩。同时,服务器和网络故障也很常见。

因此,系统必须在正常操作期间处理服务器的上下线。它们必须对变故做出反应并在几秒钟内自动适应;对客户来说的话,明显的中断通常是不可接受的。

幸运的是,分布式共识可以帮助应对这些挑战。

拜占庭将军

在介绍共识算法之前,先介绍一个简化版拜占庭将军的例子来帮助理解共识算法。

假设多位拜占庭将军中没有叛军,信使的信息可靠但有可能被暗杀的情况下,将军们如何达成是否要进攻的一致性决定?

解决方案大致可以理解成:先在所有的将军中选出一个大将军,用来做出所有的决定。

举例如下:假如现在一共有 3 个将军 A,B 和 C,每个将军都有一个随机时间的倒计时器,倒计时一结束,这个将军就把自己当成大将军候选人,然后派信使传递选举投票的信息给将军 B 和 C,如果将军 B 和 C 还没有把自己当作候选人(自己的倒计时还没有结束),并且没有把选举票投给其他人,它们就会把票投给将军 A,信使回到将军 A 时,将军 A 知道自己收到了足够的票数,成为大将军。在有了大将军之后,是否需要进攻就由大将军 A 决定,然后再去派信使通知另外两个将军,自己已经成为了大将军。如果一段时间还没收到将军 B 和 C 的回复(信使可能会被暗杀),那就再重派一个信使,直到收到回复。

共识算法

共识是可容错系统中的一个基本问题:即使面对故障,服务器也可以在共享状态上达成一致。

共识算法允许一组节点像一个整体一样一起工作,即使其中的一些节点出现故障也能够继续工作下去,其正确性主要是源于复制状态机的性质:一组Server的状态机计算相同状态的副本,即使有一部分的Server宕机了它们仍然能够继续运行。

一般通过使用复制日志来实现复制状态机。每个Server存储着一份包括命令序列的日志文件,状态机会按顺序执行这些命令。因为每个日志包含相同的命令,并且顺序也相同,所以每个状态机处理相同的命令序列。由于状态机是确定性的,所以处理相同的状态,得到相同的输出。

因此共识算法的工作就是保持复制日志的一致性。服务器上的共识模块从客户端接收命令并将它们添加到日志中。它与其他服务器上的共识模块通信,以确保即使某些服务器发生故障。每个日志最终包含相同顺序的请求。一旦命令被正确地复制,它们就被称为已提交。每个服务器的状态机按照日志顺序处理已提交的命令,并将输出返回给客户端,因此,这些服务器形成了一个单一的、高度可靠的状态机。

适用于实际系统的共识算法通常具有以下特性:

  • 安全。确保在非拜占庭条件(也就是上文中提到的简易版拜占庭)下的安全性,包括网络延迟、分区、包丢失、复制和重新排序。

  • 高可用。只要大多数服务器都是可操作的,并且可以相互通信,也可以与客户端进行通信,那么这些服务器就可以看作完全功能可用的。因此,一个典型的由五台服务器组成的集群可以容忍任何两台服务器端故障。假设服务器因停止而发生故障;它们稍后可能会从稳定存储上的状态中恢复并重新加入集群。

  • 一致性不依赖时序。错误的时钟和极端的消息延迟,在最坏的情况下也只会造成可用性问题,而不会产生一致性问题。

  • 在集群中大多数服务器响应,命令就可以完成,不会被少数运行缓慢的服务器来影响整体系统性能。

Raft算法是什么?

Raft 也是一个 一致性算法,和 Paxos 目标相同。但它还有另一个名字 - 易于理解的一致性算法。Paxos 和 Raft 都是为了实现 一致性 产生的。不同于Paxos算法直接从分布式一致性问题出发推导出来,Raft算法则是从多副本状态机的角度提出,用于管理多副本状态机的日志复制。

Raft实现了和Paxos相同的功能,它将一致性分解为多个子问题: Leader选举(Leader election)、日志同步(Log replication)、安全性(Safety)、日志压缩(Log compaction)、成员变更(Membership change)等。同时,Raft算法使用了更强的假设来减少了需要考虑的状态,使之变的易于理解和实现。

基础

节点类型

一个 Raft 集群包括若干服务器,以典型的 5 服务器集群举例。在任意的时间,每个服务器一定会处于以下三个状态中的一个:

  • Leader:负责发起心跳,响应客户端,创建日志,同步日志。

  • Candidate:Leader 选举过程中的临时角色,由 Follower 转化而来,发起投票参与竞选。

  • Follower:接受 Leader 的心跳和日志同步数据,投票给 Candidate。

在正常的情况下,只有一个服务器是 Leader,剩下的服务器是 Follower。Follower 是被动的,它们不会发送任何请求,只是响应来自 Leader 和 Candidate 的请求。

任期

如图所示,raft 算法将时间划分为任意长度的任期(term),任期用连续的数字表示,看作当前 term 号。每一个任期的开始都是一次选举,在选举开始时,一个或多个 Candidate 会尝试成为 Leader。如果一个 Candidate 赢得了选举,它就会在该任期内担任 Leader。如果没有选出 Leader,将会开启另一个任期,并立刻开始下一次选举。raft 算法保证在给定的一个任期最少要有一个 Leader。

每个节点都会存储当前的 term 号,当服务器之间进行通信时会交换当前的 term 号;如果有服务器发现自己的 term 号比其他人小,那么他会更新到较大的 term 值。如果一个 Candidate 或者 Leader 发现自己的 term 过期了,他会立即退回成 Follower。如果一台服务器收到的请求的 term 号是过期的,那么它会拒绝此次请求。

三类角色的变迁图如下:

日志

  • entry:每一个事件成为 entry,只有 Leader 可以创建 entry。entry 的内容为<term,index,cmd>其中 cmd 是可以应用到状态机的操作。

  • log:由 entry 构成的数组,每一个 entry 都有一个表明自己在 log 中的 index。只有 Leader 才可以改变其他节点的 log。entry 总是先被 Leader 添加到自己的 log 数组中,然后再发起共识请求,获得同意后才会被 Leader 提交给状态机。Follower 只能从 Leader 获取新日志和当前的 commitIndex,然后把对应的 entry 应用到自己的状态机中。

Raft算法子问题

Raft实现了和Paxos相同的功能,它将一致性分解为多个子问题:

  • Leader选举(Leader election)
  • 日志同步(Log replication)
  • 安全性(Safety)
  • 日志压缩(Log compaction)
  • 成员变更(Membership change)

领导人选举

raft 使用心跳机制来触发 Leader 的选举。当Server启动时,初始化为Follower。Leader向所有Followers周期性发送heartbeat。如果Follower在选举超时时间内没有收到Leader的heartbeat,就会等待一段随机的时间后发起一次Leader选举。 Follower将其当前term加一然后转换为Candidate。它首先给自己投票并且给集群中的其他服务器发送 RequestVote RPC 。结果有以下三种情况:

  • 赢得了多数(超过1/2)的选票,成功选举为Leader;
  • 收到了Leader的消息,表示有其它服务器已经抢先当选了Leader;
  • 没有Server赢得多数的选票,Leader选举失败,等待选举时间超时(Election Timeout)后发起下一次选举。

在 Candidate 等待选票的时候,它可能收到其他节点声明自己是 Leader 的心跳,此时有两种情况:

  • 该 Leader 的 term 号大于等于自己的 term 号,说明对方已经成为 Leader,则自己回退为 Follower。

  • 该 Leader 的 term 号小于自己的 term 号,那么会拒绝该请求并让该节点更新 term。

如果一台服务器能够收到来自 Leader 或者 Candidate 的有效信息,那么它会一直保持为 Follower 状态,并且刷新自己的 electionElapsed,重新计时。

Leader 会向所有的 Follower 周期性发送心跳来保证自己的 Leader 地位。如果一个 Follower 在一个周期内没有收到心跳信息,就叫做选举超时,然后它就会认为此时没有可用的 Leader,并且开始进行一次选举以选出一个新的 Leader。

由于可能同一时刻出现多个 Candidate,导致没有 Candidate 获得大多数选票,如果没有其他手段来重新分配选票的话,那么可能会无限重复下去。

日志复制

一旦选出了 Leader,它就开始接受客户端的请求。每一个客户端的请求都包含一条需要被复制状态机(Replicated State Machine)执行的命令。

Leader 收到客户端请求后,会生成一个 entry,包含<index,term,cmd>,再将这个 entry 添加到自己的日志末尾后,向所有的节点广播该 entry,要求其他服务器复制这条 entry。

如果 Follower 接受该 entry,则会将 entry 添加到自己的日志后面,同时返回给 Leader 同意。

如果 Leader 收到了多数的成功响应,Leader 会将这个 entry 应用到自己的状态机中,之后可以成为这个 entry 是 committed 的,并且向客户端返回执行结果。

raft 保证以下两个性质:

  • 在两个日志里,有两个 entry 拥有相同的 index 和 term,那么它们一定有相同的 cmd,即所存储的命令是相同的。

  • 在两个日志里,有两个 entry 拥有相同的 index 和 term,那么它们前面的 entry 也一定相同

第一条特性源于Leader在一个term内在给定的一个log index最多创建一条日志条目,同时该条目在日志中的位置也从来不会改变。

第二条特性源于 AppendEntries 的一个简单的一致性检查。当发送一个 AppendEntries RPC 时,Leader会把新日志条目紧接着之前的条目的log index和term都包含在里面。如果Follower没有在它的日志中找到log index和term都相同的日志,它就会拒绝新的日志条目。

一般情况下,Leader和Followers的日志保持一致,因此 AppendEntries 一致性检查通常不会失败。然而,Leader崩溃可能会导致日志不一致: 旧的Leader可能没有完全复制完日志中的所有条目。Leader 通过强制 Follower 复制自己的日志来处理日志的不一致。这就意味着,在 Follower 上的冲突日志会被领导者的日志覆盖。

为了使得 Follower 的日志和自己的日志一致,Leader 需要找到 Follower 与它日志一致的地方,然后删除 Follower 在该位置之后的日志,接着把这之后的日志发送给 Follower。

Leader 给每一个Follower 维护了一个 nextIndex,它表示 Leader 将要发送给该追随者的下一条日志条目的索引。当一个 Leader 开始掌权时,它会将 nextIndex 初始化为它的最新的日志条目索引数+1。如果一个 Follower 的日志和 Leader 的不一致,AppendEntries 一致性检查会在下一次 AppendEntries RPC 时返回失败。在失败之后,Leader 会将 nextIndex 递减然后重试 AppendEntries RPC。最终 nextIndex 会达到一个 Leader 和 Follower 日志一致的地方。这时,AppendEntries 会返回成功,Follower 中冲突的日志条目都被移除了,并且添加所缺少的上了 Leader 的日志条目。一旦 AppendEntries 返回成功,Follower 和 Leader 的日志就一致了,这样的状态会保持到该任期结束。

安全性

选举限制

Leader 需要保证自己存储全部已经提交的日志条目。这样才可以使日志条目只有一个流向:从 Leader 流向 Follower,Leader 永远不会覆盖已经存在的日志条目。

每个 Candidate 发送 RequestVoteRPC 时,都会带上最后一个 entry 的信息。所有节点收到投票信息时,会对该 entry 进行比较,如果发现自己的更新,则拒绝投票给该 Candidate。

判断日志新旧的方式:如果两个日志的 term 不同,term 大的更新;如果 term 相同,更长的 index 更新。

节点崩溃

如果 Leader 崩溃,集群中的节点在 electionTimeout 时间内没有收到 Leader 的心跳信息就会触发新一轮的选主,在选主期间整个集群对外是不可用的。

如果 Follower 和 Candidate 崩溃,处理方式会简单很多。之后发送给它的 RequestVoteRPC 和 AppendEntriesRPC 会失败。由于 raft 的所有请求都是幂等的,所以失败的话会无限的重试。如果崩溃恢复后,就可以收到新的请求,然后选择追加或者拒绝 entry。

时间与可用性

raft 的要求之一就是安全性不依赖于时间:系统不能仅仅因为一些事件发生的比预想的快一些或者慢一些就产生错误。为了保证上述要求,最好能满足以下的时间条件:

broadcastTime << electionTimeout << MTBF

  • broadcastTime:向其他节点并发发送消息的平均响应时间;

  • electionTimeout:选举超时时间;

  • MTBF(mean time between failures):单台机器的平均健康时间;

broadcastTime应该比electionTimeout小一个数量级,为的是使Leader能够持续发送心跳信息(heartbeat)来阻止Follower开始选举;

electionTimeout也要比MTBF小几个数量级,为的是使得系统稳定运行。当Leader崩溃时,大约会在整个electionTimeout的时间内不可用;我们希望这种情况仅占全部时间的很小一部分。

由于broadcastTime和MTBF是由系统决定的属性,因此需要决定electionTimeout的时间。

一般来说,broadcastTime 一般为 0.5~20ms,electionTimeout 可以设置为 10~500ms,MTBF 一般为一两个月。

日志压缩

在实际的系统中,不能让日志无限增长,否则系统重启时需要花很长的时间进行回放,从而影响可用性。Raft采用对整个系统进行snapshot来解决,snapshot之前的日志都可以丢弃。

每个副本独立的对自己的系统状态进行snapshot,并且只能对已经提交的日志记录进行snapshot。

Snapshot中包含以下内容:

  • 日志元数据。最后一条已提交的 log entry的 log index和term。这两个值在snapshot之后的第一条log entry的AppendEntries RPC的完整性检查的时候会被用上。
  • 系统当前状态。

当Leader要发给某个日志落后太多的Follower的log entry被丢弃,Leader会将snapshot发给Follower。或者当新加进一台机器时,也会发送snapshot给它。发送snapshot使用InstalledSnapshot RPC。

做snapshot既不要做的太频繁,否则消耗磁盘带宽, 也不要做的太不频繁,否则一旦节点重启需要回放大量日志,影响可用性。推荐当日志达到某个固定的大小做一次snapshot。

做一次snapshot可能耗时过长,会影响正常日志同步。可以通过使用copy-on-write技术避免snapshot过程影响正常日志同步。

成员变更

成员变更是在集群运行过程中副本发生变化,如增加/减少副本数、节点替换等。

成员变更也是一个分布式一致性问题,既所有服务器对新成员达成一致。但是成员变更又有其特殊性,因为在成员变更的一致性达成的过程中,参与投票的进程会发生变化。

如果将成员变更当成一般的一致性问题,直接向Leader发送成员变更请求,Leader复制成员变更日志,达成多数派之后提交,各服务器提交成员变更日志后从旧成员配置(Cold)切换到新成员配置(Cnew)。

因为各个服务器提交成员变更日志的时刻可能不同,造成各个服务器从旧成员配置(Cold)切换到新成员配置(Cnew)的时刻不同。

成员变更不能影响服务的可用性,但是成员变更过程的某一时刻,可能出现在Cold和Cnew中同时存在两个不相交的多数派,进而可能选出两个Leader,形成不同的决议,破坏安全性。

由于成员变更的这一特殊性,成员变更不能当成一般的一致性问题去解决。

为了解决这一问题,Raft提出了两阶段的成员变更方法。集群先从旧成员配置Cold切换到一个过渡成员配置,称为共同一致(joint consensus),共同一致是旧成员配置Cold和新成员配置Cnew的组合Cold U Cnew,一旦共同一致Cold U Cnew被提交,系统再切换到新成员配置Cnew。

Raft两阶段成员变更过程如下:

  1. Leader收到成员变更请求从Cold切成Cnew;
  2. Leader在本地生成一个新的log entry,其内容是Cold∪Cnew,代表当前时刻新旧成员配置共存,写入本地日志,同时将该log entry复制至Cold∪Cnew中的所有副本。在此之后新的日志同步需要保证得到Cold和Cnew两个多数派的确认;
  3. Follower收到Cold∪Cnew的log entry后更新本地日志,并且此时就以该配置作为自己的成员配置;
  4. 如果Cold和Cnew中的两个多数派确认了Cold U Cnew这条日志,Leader就提交这条log entry;
  5. 接下来Leader生成一条新的log entry,其内容是新成员配置Cnew,同样将该log entry写入本地日志,同时复制到Follower上;
  6. Follower收到新成员配置Cnew后,将其写入日志,并且从此刻起,就以该配置作为自己的成员配置,并且如果发现自己不在Cnew这个成员配置中会自动退出;
  7. Leader收到Cnew的多数派确认后,表示成员变更成功,后续的日志只要得到Cnew多数派确认即可。Leader给客户端回复成员变更执行成功。

异常分析:

  • 如果Leader的Cold U Cnew尚未推送到Follower,Leader就挂了,此后选出的新Leader并不包含这条日志,此时新Leader依然使用Cold作为自己的成员配置。
  • 如果Leader的Cold U Cnew推送到大部分的Follower后就挂了,此后选出的新Leader可能是Cold也可能是Cnew中的某个Follower。
  • 如果Leader在推送Cnew配置的过程中挂了,那么同样,新选出来的Leader可能是Cold也可能是Cnew中的某一个,此后客户端继续执行一次改变配置的命令即可。
  • 如果大多数的Follower确认了Cnew这个消息后,那么接下来即使Leader挂了,新选出来的Leader肯定位于Cnew中。
  • 两阶段成员变更比较通用且容易理解,但是实现比较复杂,同时两阶段的变更协议也会在一定程度上影响变更过程中的服务可用性,因此我们期望增强成员变更的限制,以简化操作流程。

两阶段成员变更,之所以分为两个阶段,是因为对Cold与Cnew的关系没有做任何假设,为了避免Cold和Cnew各自形成不相交的多数派选出两个Leader,才引入了两阶段方案。

如果增强成员变更的限制,假设Cold与Cnew任意的多数派交集不为空,这两个成员配置就无法各自形成多数派,那么成员变更方案就可能简化为一阶段。

那么如何限制Cold与Cnew,使之任意的多数派交集不为空呢? 方法就是每次成员变更只允许增加或删除一个成员。

可从数学上严格证明,只要每次只允许增加或删除一个成员,Cold与Cnew不可能形成两个不相交的多数派。

一阶段成员变更:

  • 成员变更限制每次只能增加或删除一个成员(如果要变更多个成员,连续变更多次)。
  • 成员变更由Leader发起,Cnew得到多数派确认后,返回客户端成员变更成功。
  • 一次成员变更成功前不允许开始下一次成员变更,因此新任Leader在开始提供服务前要将自己本地保存的最新成员配置重新投票形成多数派确认。
  • Leader只要开始同步新成员配置,即可开始使用新的成员配置进行日志同步。

Multi Paxos 、Raft 、ZAB 的关系与区别

以上这种把共识问题分解为“Leader Election”、“Entity Replication”和“Safety”三个问题来思考、解决的解题思路,即“Raft 算法”

ZooKeeper 的 ZAB 算法与 Raft 的思路也非常类似,这些算法都被认为是 Multi Paxos 的等价派生实现。

核心原理都是一样:

  • 通过随机超时来实现无活锁的选主过程
  • 通过主节点来发起写操作
  • 通过心跳来检测存活性
  • 通过Quorum机制来保证一致性

具体细节上可以有差异:

  • 是全部节点都能参与选主,还是部分节点能参与(ZAB 分为 Leader Follower Observer 只有 Follower 能选 Leader)
  • Quorum中是众生平等还是各自带有权重
  • 怎样表示值的方式

Paxos像民主制: 人人平等可提议, 需要反复协商, 决策过程复杂。
代表作:MySQL MGR组复制,多主模式下多个节点都可以写入(需冲突检测)。

Raft像独裁制: 有明确的负责人(班长), 命令执行简单直接, 容易理解和执行。
代表作:MongoDB副本集,只有Primary 节点可以接收写入请求。

推荐网站

学习 raft 算法,一定要看的两个网站:

  • https://raft.github.io
  • http://www.kailing.pub/raft/index.html

往期推荐

  • 《SpringBoot》EasyExcel实现百万数据的导入导出
  • 《SpringBoot》史上最全SpringBoot相关注解介绍
  • Spring框架IoC核心详解
  • 万字长文带你窥探Spring中所有的扩展点
  • 如何实现一个通用的接口限流、防重、防抖机制
  • 万字长文带你深入Redis底层数据结构
  • volatile关键字最全原理剖析

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/887015.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度对比:PostgreSQL 和 SQL Server 在统计信息维护中的关键差异

深度对比:PostgreSQL 和 SQL Server 在统计信息维护中的关键差异数据库统计信息的作用 在数据库系统中,查询优化在决定应用程序性能方面起着至关重要的作用。 高效的查询依赖于最新的数据库统计信息,这些统计信息帮助数据库的查询优化器选择最佳的执行计划。在PostgreSQL和M…

SynchronousQueue底层实现原理剖

一、SynchronousQueue底层实现原理剖 SynchronousQueue(同步移交队列),队列长度为0。作用就是一个线程往队列放数据的时候,必须等待另一个线程从队列中取走数据。同样,从队列中取数据的时候,必须等待另一个线程往队列中放数据 二、SynchronousQueue用法 先看一个Synchron…

[2025.2.18 JavaWeb学习]Mybatis

入门MyBatis是一款优秀的持久层(dao)框架,用于简化JDBC的开发 使用:IDEA创建SpringBoot模块,而后勾选MySQL Driver和MyBatis Framework pom.xml引入了mybatis-spring-boot-starter起步依赖、com.mysql依赖包、org.springframework.boot单元测试依赖 pojo中,创建实体对象,…

ROS2-PX4学习笔记

搞点小研究,欢迎对ROS2、PX4感兴趣的同学浏览。希望Mujica能好起来。ROS2-PX4学习笔记 前言 做毕设其实是个有点痛苦的过程。 毕竟所有东西都得现学,然后探索,时间又有限。 研究没接触过的新东西,总会失败,没有产出,搞久了人难受。 所以还是写一点东西吧。 我挺想把这个坑…

MessagePipe 中文文档

MessagePipe 是一个专为 .NET 和 Unity 设计的高性能内存/分布式消息管道。支持所有 Pub/Sub 场景、CQRS 中介模式、Prism 的 EventAggregator(视图与视图模型解耦)、IPC(进程间通信)-RPC 等。MessagePipeMessagePipe 是一个专为 .NET 和 Unity 设计的高性能内存/分布式消息…

Avalonia系列文章之样式与主题

随着社会的发展,大家对软件的要求,从最初的命令行输入输出,到可视化输入输出,如报表,图表等;从最初的可用性,稳定性为主,到现代软件理念中的便捷易用性转变,在保证稳定可用外,对软件的交互易用要求越来越高,而这些则离不开UI设计以及样式的应用。今天以一些简单的小…

SynchronousQueue的put方法底层源码

一、SynchronousQueue的put方法底层源码 SynchronousQueue 的 put 方法用于将元素插入队列。由于 SynchronousQueue 没有实际的存储空间,put 方法会阻塞,直到有消费者线程调用 take 方法移除元素 1、put 方法的作用将元素插入队列。如果没有消费者线程等待,当前线程会阻塞,…

【Tomcat文件上传】绕WAF姿势深入研究

环境 本地环境tomcat8.5.93,无黑白名单限制getSubmittedFileName()函数 tomcat可以通过filePart.getSubmittedFileName();获取上传文件的原始名filename获取Content-Disposition头后,判断值是否form-data或attachment开头 然后112行将form-data; name="file"; file…

关于一个手机控制电脑执行特定任务的解决方案探索【1】

【前言】 说来话长,关于这个手机控制电脑执行特定任务的想法早在几年前就有,但因为对安卓平台开发经验实在不足,就一直拖到了现在。不过好在没有忘记初衷,接下来我们一起来看我的思路和方法。 【思路】 想要通过手机作为控制端,来发送指令给同一网络下的电脑端,执行特定任…

如何升级 PowerShell 到最新版本

前言最近,需要大量使用PowerShell,然后有需要PowerShell 7正文升级的步骤也比较简单,按照下面的步骤就好了文字版本的,方便大家复制粘贴。PS C:\WINDOWS\system32> $PSVersionTable.PSVersionMajor Minor Build Revision ----- ----- ----- -------- 5 1 …

百万架构师第四十课:RabbitMq:RabbitMq-工作模型与JAVA编程|JavaGuide

来源:https://javaguide.net RabbitMQ 1-工作模型与Java编程 课前准备 预习资料 Windows安装步骤 Linux安装步骤 官网文章中文翻译系列 环境说明 操作系统:CentOS 7 JDK:1.8 Erlang:19.0.4或最新版 RabbitMQ:3.6.12或最新版 版本对应关系 典型应用场景跨系统的异步通信。人…

1月16日java假期学习读书笔记

一、学习目标 掌握HTML的基本结构和常用标签。 了解CSS的基本选择器和样式规则。 通过实际代码练习,构建一个简单的网页。 二、学习内容 (一)HTML基础 HTML简介 HTML(HyperText Markup Language,超文本标记语言)是用于构建网页的标准标记语言。 它通过一系列的标签(如、…