机器学习——KNN算法

1、:前提知识

  • KNN算法是机器学习算法中用于分类或者回归的算法,KNN全称为K nearest neighbour(又称为K-近邻算法)

  • 原理:K-近邻算法采用测量不同特征值之间的距离的方法进行分类。

  • 优点:精度高

  • 缺点:时间和空间复杂度高

  • K近邻算法思想:有N个样本分布在m个类别中,要判定第x个样本为什么类别,就要求出x到N个样本每个样本的距离集合,从中找出K个最近的样本,然后通过k个样本的比例判断x所属类别,例如在k个样本中第一类占比较多,就判定x是第一类数据。注意:计算x到N个样本之间的距离方法有两种,第一种是曼哈顿距离,第二种是欧式距离,他们的计算如下:
    在这里插入图片描述
    可以看出,曼哈顿距离计算复杂度较低,计算速度快。

  • 实现方法:基于谷歌公司开发的第三方python库sklearn

  • 实现步骤:

    • 1、导入numpy、pandas、matplotlib、from sklearn.neighbors import KNeighborsClassifier第三方库
    • 2、导入原始数据(导入数据后可以通过散点图进行数据可视化简单了解下数据)
    • 3、将数据划分为训练数据(x_train、y_train)和测试数据(x_test、y_test),注意:在KNN中输入数据x为二维数据,输出数据y为一维数据。(注意:二维数据代表数据只能有行和列两个维度,但x可以有多个,x也叫做特征,输入数据必须是数值型数据,如果不是就需要转换为数值型数据。输出数据也就是目标数据可以是数值和字符串)
    • 4、设定KNN算法参数,引入KNN模型
    • 5、通过fit函数输入训练数据,训练KNN模型
    • 6、通过测试数据测试KNN模型
    • 7、计算模型准确率

2、案例:

  • 我有一份原始数据,数据中有两个变量,分别为“武打镜头”和“接吻镜头”,通过这两个变量可以判断这部影片为动作片还是爱情片,规则就是:武打镜头大于接吻镜头为动作片,武打镜头小于接吻镜头为爱情片,原始数据如下:
    在这里插入图片描述
  • 代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 导入KNN分类库
from sklearn.neighbors import KNeighborsClassifier# 1、导入数据
movie = pd.read_excel('./tests.xlsx',sheet_name="Sheet2")
# 2、数据可视化
plt.scatter(movie.loc[:,'武打镜头'],movie.loc[:,'接吻镜头'])
plt.show
# 3、训练数据赋值,x(二维)、y(一维)
x_train = movie.loc[:,['武打镜头','接吻镜头']]
y_train = movie.loc[:,'分类情况']
print(type(x_train),type(y_train))
# 4、设置KNN参数(近邻数量为5,距离计算方法为曼哈顿),引入KNN模型
KNN = KNeighborsClassifier(n_neighbors=5,p=1)
# 5、训练模型
KNN.fit(x_train,y_train)
# 6、设置测试数据测试训练完的KNN模型
x_test = np.array([[30,2],[3,36],[2,15],[30,2]])
y_test = np.array(['动作片','爱情片','爱情片','动作片'])
y_pred = KNN.predict(x_test)
print(y_pred)
# 7、计算测试集准确率(accuracy)
KNN.score(x_test,y_test)

3、鸢尾花分类任务实战:

  • 1、学习sklearn中自带的数据集调用方法
    • 导入鸢尾花数据集:from sklearn.datasets import load_iris(同过tab键代码补齐的方法就能靠大概记忆输入此行代码)
    • 使用数据集:load_iris(),如下所示为调用结果,结果为字典形式,其中data为数据键,对应的值为array二维数组(150行*4列),其中第一列特征为花萼的长度(sepal length (cm)),第二列特征为花萼的宽度’sepal width (cm)‘,第三列特征为花瓣的长度’petal length (cm)’,第四列特征为花瓣的宽度 ‘petal width (cm)’。target键对应的为150组数据对应的分类标签,其中0代表’setosa’鸢尾花,1 代表’versicolor’鸢尾花, 2代表’virginica’鸢尾花。其他键表示的就是一些数据集的相关信息。
  • 2、通过字典调用方式获取数据集中的相关数据,再根据pandas或者numpy处理数据。
# 获取输入数据
data = s_data['data']
pd.DataFrame(data)
# 获取输出数据
target = s_data['target']
  • 3、将数据集划分为训练数据和测试数据(使用sklearn库中model_selection模块中的train_test_split函数)
# 导入sklearn自带的切分训练数据和测试数据的包
from sklearn.model_selection import train_test_split# 将数据切分为训练集输入、训练集输出、测试集输入、测试集输出
# test_size的参数如果是整数就会从所有数据中取多少条作为测试数据
# test_size的参数如果是0~1的小数就会从所有数据中按比例取多少条作为测试数据
# random_state参数可以让每次数据切分都一样
x_train, x_test, y_train, y_test = train_test_split(data,target,test_size=10)
  • 4、导入KNN模型,训练数据,并测试分类效果
# 获取KNN算法
KNN = KNeighborsClassifier()
# 训练KNN算法
model = KNN.fit(x_train,y_train)
# 测试模型分类效果
model.predict(x_test)
print(y_test)
# 计算分类准确度
model.score(x_test,y_test)

4、补充(这部分内容不一定会用到,但用到可以查)

  • 1、DataFrame数据可以直接用matplotlib中的plot画出数据的折线图,下面的例子是画出鸢尾花数据集的特征数据折线图
s_data = load_iris()
# 获取输入数据
data = s_data['data']
data = pd.DataFrame(data,columns=s_data['feature_names'])
# 用DataFrame直接画图查看数据集
data.plot()

在这里插入图片描述

  • 2、绘制分类分界图:目的是将一个数据集中的数据放在一个坐标系中,然后让除了数据以外坐标系中其他区域也显示分类情况
# 1、先划分坐标系
x = np.linspace(data2.iloc[:, 0].min(), data2.iloc[:, 0].max(), 1000)   # 把x等分成1000份
y = np.linspace(data2.iloc[:, 1].min(), data2.iloc[:, 1].max(), 1000)   # 把y等分成1000份X, Y = np.meshgrid(x, y) # 按行复制y个x,按列复制x个y
XY = np.c_[X.ravel(), Y.ravel()] # 将x扁平化,将y扁平化,再一对一组合,最终XY形状为(1000000, 2)
# 用KNN模型预测
knn = KNeighborsClassifier()
knn.fit(data2, target)
y_pred = knn.predict(XY)
y_pred
# 分界图
plt.scatter(XY[:, 0], XY[:, 1], c=y_pred)

在这里插入图片描述
注意:上面绘图需要等待,可以使用matplotlib自带的绘图函数,绘图就不用等待了。
pcolormesh(): 画分界图,边界图
plt.pcolormesh(X, Y, y_pred.reshape(1000, 1000))

  • 3、保存模型和加载模型
# 保存模型
import joblib
joblib.dump(模型名称,"模型存储路径.plk")
# 加载模型
import joblib
joblib.load("模型存储路径.plk")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/90823.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【传输层】网络基础 -- UDP协议 | TCP协议

再谈端口号端口号范围划分netstatpidof UDPUDP的特点面向数据报UDP的缓冲区 基于UDP的应用层协议 TCP认识TCP协议的报头理解封装解包理解可靠性TCP工作模式16位窗口大小6位标志位URGACKPSHRSTSYNFIN 再谈端口号 端口号(Port)标识了一个主机上进行通信的不同的应用程序 在TCP/I…

数据结构--树4.2(二叉树)

目录 一、二叉树的定义和特点 1、定义 2、特点 二、二叉树的基本形态 1、空二叉树 2、只有一个根结点 3、根结点只有左子树 4、根结点只有右子树 5、根结点既有左子树又有右子树 6、斜树 7、满二叉树 8、满二叉树和完全二叉树 三、二叉树的性质 一、二叉树的定义和…

做区块链卡牌游戏有什么好处?

区块链卡牌游戏是一种基于区块链技术的创新性游戏形式,它将传统的卡牌游戏与区块链技术相结合,实现了去中心化、数字化资产的交易和收集。这种新型游戏形式正逐渐在游戏行业引起了广泛的关注和热潮。本文将深入探讨区块链卡牌游戏的定义、特点以及其在未…

【已解决】激活虚拟环境报错:此时不应有Anaconda3\envs\[envs]\Library\ssl\cacert.pem。

新建虚拟环境后,进入虚拟环境的时候出现这样的报错: 此时不应有Anaconda3 envs yolov5 Library ssl cacert.pem。 但是之前装的虚拟环境也还能再次激活,base环境也无任何问题,仅新装的虚拟环境无法激活。 查遍了百度谷歌&#xff…

集丰照明|汽车美容店设计,装修色彩灯光搭配方法

正确处理好店面的空间设计。 店铺各个功能区设计要合理,衔接合理,这样既能提高员工的工作效率也能提高顾客的满意度。合理安排店铺的空间分配, 要给顾客一种舒适度,既不能让顾客感觉到过于拥挤,又不能浪费店铺的有限空…

安达发|2024年,APS计划排产技术应运而生

随着制造业竞争加剧,企业如何提高生产效率、降低成本、满足客户需求成为关键。2024年,APS计划排产技术应运而生,通过实施APS自动排程,企业将获得诸多效益。 近年来,全球制造业正面临着原材料价格波动、人工成本上升、环…

Google登录SDK

一、接入的准备工作 官方文档链接地址:开始使用一键登录和注册 按照步骤进行接入即可 二、项目参考(Unity项目) 注意:代码版本如果不适用新的Google API 请自行参考最新版本接口 SDKGoogleSignInActivity 主要用于登录的代码。Un…

设计模式备忘录+命令模式实现Word撤销恢复操作

文章目录 前言思路代码实现uml类图总结 前言 最近学习设计模式行为型的模式,学到了备忘录模式提到这个模式可以记录一个对象的状态属性值,用于下次复用,于是便想到了我们在Windows系统上使用的撤销操作,于是便想着使用这个模式进…

DCL介绍

文章目录 1. 简介2. DCL管理用户3. DCL权限控制 1. 简介 DCL英文全称为(数据控制语言),用来管理数据库用户、控制数据库的访问权限 2. DCL管理用户 查询用户 Use mysql; select * from user;创建用户 create user 用户名主机名 Identifi…

【UE 材质】模型部分透明

材质节点如下,这里简单解释一下。首先通过“Mask”节点将"Texture Coordinate" 节点中的“G”通道分离出来,然后通过“if”节点进行判断,当值小于0.5时为透明,当颜色不小于5时为不透明。可以通过一个参数来控制模型透明…

C++实现客户端/服务端通信(一)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 C实现客户端/服务端通信(一) 网络编程的基本概念1. 客户端/服务器通信模型:2. socket函数:3. 主机字节序和网络字节序&#xf…

k8s 常用命令(四)

12、删除pod中的nginx服务及service [rootmaster ~]# kubectl delete deployment nginx -n kube-public [rootmaster ~]# kubectl delete svc -n kube-public nginx-service 13、查看endpoint的信息 [rootmaster ~]# kubectl get endpoints 14、修改/更新(镜像、…