Matlab 使用经验分享(常用函数介绍;矩阵常见计算)

Matlab 使用经验分享

大家好!最近有很多朋友询问我关于 Matlab 的使用,于是我决定写一篇博客来分享一下我的经验。对于数学和编程爱好者来说,Matlab 是一个非常有用的工具。我自己在数学实验和数学建模竞赛中也经常使用它。那么,为什么 Matlab 这么受欢迎呢?

Matlab 的起源

MATLAB 是美国MathWorks 公司自20 世纪 80 年代中期推出的数学软件, 优秀的数值 计算能力和卓越的数据可视化能力使其很快在数学软件中脱颖而出。

为什么选择 Matlab?

由于 Maltab 编程方便,有大量内部函数和工具箱可以使用,作图也十分方便,因此在 数学实验和数学建模竞赛中,我们就常使用 Matlab 作为我们的编程工具。

一些常用函数介绍

  • 三角函数
    • sin: --正弦
    • sinh: 双曲正弦
    • asin: -反正弦
    • cosh: 双曲余弦
    • acos: -反余弦
    • atanh: --反双曲正切
  • 指数函数与对数函数
    • exp: -指数
    • log: --e 为底的对数
    • log10: 常用对数
    • sqrt: --平方根
  • 与复数有关的函数
    • abs: -模或绝对值
    • angle: 幅角
    • conj: 复共轭
    • imag: 虚部
    • real: --实部
  • 舍入函数及其它数值函数
    • fix: – 向 0 舍入
    • floor: 向负无穷舍入
    • ceil: – 向正无穷舍入
    • sign(x): -符号函数
    • min(x): 向量 x 的元素的最小值
    • max(x): 向量 x 的元素的最大值
    • mean(x): 向量 x 的元素的平均值
    • median(x): 向量 x 的元素的中位数
    • std(x): 向量 x 的元素的标准差
    • diff(x): 向量 x 的相邻元素的差
    • sort(x): 对向量 x 的元素进行排序
    • length(x): 向量 x 的元素个数
    • norm(x): 向量 x 的 Euclidean 长度
    • sum(x): 向量 x 的元素总和
    • prod(x): 向量 x 的元素连乘积
    • cumsum(x): 向量 x 的累计元素总和

矩阵常见计算

矩阵输入

矩阵输入最简单的方法是把矩阵的元素直接排列在方括号中。每行内的元素间用空格或逗号隔开,行与行之间用分号隔开。例如:

A=[1,4,7;3,6,9;6,7,4]

矩阵的转置

矩阵的转置用符号´来表示。例如:

A=[1,4,7;3,6,9;6,7,4];
B=

矩阵的加减

矩阵的加减使用的是”+”和”-“运算符。进行矩阵加减运算必须是同型矩阵。例如:
A=[1,3,6;4,5,7;7,8,9];
B=[3,5,7;2,4,6;1,3,9];
C=A+B
以下是关于矩阵与标量进行加减运算的内容:
矩阵可以与一个数进行加减运算,运算法则是对应每个元素加减同一个数。例如:

Z=C-1

结果为:
Z =
3
5

矩阵乘法

矩阵乘法用符号*表示。要求前一矩阵的列数与后一矩阵的行数相同。例如:

A=[1,4,7;2,5,8];
B=[4,5,9;1,7,8;3,2,1];
C=A*B

在 Matlab 中,还可以进行矩阵与数的乘法。其规则是矩阵的每个元素与该数相乘。例如:

A=[1,5,8;2,6,9];
B=3*A

结果为:
B =
3 15 24
6 18 27

矩阵的行列式

求方阵 A 的行列式,用 det(A) 表示。例如:
A=[1,3,6;2,5,8;3,9,11];
Z=det(A)

矩阵求逆

非奇异矩阵 ( A ) 的求逆用 inv(A) 表示。例如:

A=[1,3,6;2,5,8;3,9,11];
Z=inv(A)

结果为:
Z =
-2.4286 3.0000 -0.8571
0.2857 -1.0000 0.5714

以下是关于如何验证矩阵的逆以及如何使用逆矩阵来解方程组的内容:
要验证矩阵的逆是否正确,可以计算 ( C = A \times Z )。例如:

C =1.0000 0 -0.00000 1.0000 -0.0000...

利用逆矩阵可以解方程组。例如:
AX=b
其中:
A=[1,3,6;…
以下是关于如何使用矩阵来解方程组和函数拟合的内容:
例如,给定以下方程组:

A=[1,3,6;2,5,8;3,9,11];
b=[3,6,7]';
X=inv(A)*b

结果为:
X =
4.7143
-1.1429
0.2857
或者,使用 X=A\b 也可以求解。此外,X=A\b 还可以求解矛盾方程组。

函数拟合

假设因变量 y 与自变量 x 之间存在以下关系:
y = a + b * exp(-x)
观测数据为:
| x | 0.0 | 0.3 | 0.8 | 1.1 | 1.6 | 2.3 |
| y | 0.82| 0.72| 0.63| 0.60| 0.55| 0.5 |
基于这些数据,我们可以建立矛盾方程组 AX=y,其中X=[a,b] ′
以下是关于如何使用 m 文件进行函数拟合的内容:
我们可以创建以下 m 文件来进行拟合:
t=[0.0, 0.3, 0.8, 1.1, 1.6, 2.3]‘;
y=[0.82, 0.72, 0.63, 0.60, 0.55, 0.5]’;
A=[ones(size(t)),exp(-t)];
X=inv(A’*A)*A’*y;
或者
X=A\y;
计算结果为:
X = 0.4760 0.3413
即:a=0.4760,b=0.3413。
函数拟合为:y=0.476+0.3413×e^x 。
我们可以使用图形来表示结果。
在这里插入图片描述
以下是 M 文件的内容:
M 文件如下
t=[0.0 0.3 0.8 1.1 1.6 2.3]’
y=[0.82 0.72 0.63 0.60 0.55 0.5]’
A=[ones(size(t)),exp(-t)]
x=inv(A’*A)*A’y
n=500
tt=zeros(n,1);
yy=zeros(n,1);
dt=2.3/n;
for i=1:n
tt(i)=i
dt;
yy(i)=x(1)+x(2)*exp(-tt(i));
end
plot(t,y,‘*b’,tt,yy,‘r’)
b—表示蓝色,代表原数据
r-----表示红色,代表拟合曲线

矩阵特征值

如果 A 为方阵,满足 AX=λX 的 λ 称为 A 的特征值,X 称为 A 的特征向量。计算 A 的特征值用 eig(A)表示。
例如:
A=[1 3 6; 2 5 8; 3 6 8];
Z=eig(A)
结果为:
Z =
15.2382
-1.3365
0.0982
如要同时求出特征向量,采用表达式 [X,V]=eig(A)。
结果为:
X = -0.4135 -0.6094
-0.6765
V =
15.2382
0
0

需要直接看PDF文件,直接在博主主页的资源里免费下载,因为博主写的时候可能个别的会有缺漏,需要看原文档的直接下载即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/91105.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CotEditor for mac 4.0.1 中文版(开源文本编辑器)

coteditorformac是一款简单实用的基于Cocoa的macOS纯文本编辑器,coteditormac版本可以用来编辑网页、结构化文本、程序源代码等文本文件,使用起来非常方便。 CotEditor for Mac具有正则表达式搜索和替换、语法高亮、编码等实用功能,而CotEdi…

信息化发展12

数字民生 数字民生建设重点通常强调: 1 ) 普惠: 充分开发利用信息技术体系, 扩大民生保障覆盖范围, 助力普惠型民生建设, 解决民生资源配置不均衡等问题。 2) 赋能: 信息技术体系与…

FreeSWITCH 1.10.10 简单图形化界面3 - 阿里云NAT设置

FreeSWITCH 1.10.10 简单图形化界面3 - 阿里云NAT设置 0、 界面预览1、 查看IP地址2、 修改协议配置3、 开放阿里云安全组4、 设置ACL5、 设置协议中ACL,让PBX匹配内外网6、 重新加载SIP模块7、 查看状态8、 测试一下 0、 界面预览 http://myfs.f3322.net:8020/ 用…

《Flink学习笔记》——第十一章 Flink Table API和 Flink SQL

Table API和SQL是最上层的API,在Flink中这两种API被集成在一起,SQL执行的对象也是Flink中的表(Table),所以我们一般会认为它们是一体的。Flink是批流统一的处理框架,无论是批处理(DataSet API&a…

uniapp返回上一页并刷新

在uniapp中,经常会有返回上一页的情况,官方提供有 uni.navigateBack 这个api来实现效果,但是此方法返回到上一页之后页面并不会更新(刷新)。 例如有这样一个场景:从地址列表页点击添加按钮进入添加地址页面…

服务器放在香港好用吗?

​  相较于国内服务器,将网站托管在香港服务器上最直观的好处是备案层面上的。香港服务器上的网站无需备案,因此更无备案时限,购买之后即可使用。 带宽优势 香港服务器的带宽一般分为香港本地带宽和国际带宽、直连中国骨干网 CN2三种。香港…

uniapp简单版语音唤醒

第一步: 先登录--- 获取唤醒词 相关网址 百度AI开放平台-全球领先的人工智能服务平台-百度AI开放平台 第二步: 去注册百度云 访问这个网址 百度智能云-登录 去创建应用 请注意自己的 app的打包时候的包名 要填上啊!!&am…

vue 入门案例模版

vue 入门案例1 01.html <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> &l…

NI RF 无线设计与测试产品 ,你所需要了解的一切

无线设计与测试 随着无线通信的界限不断突破&#xff0c;NI专门针对快速原型验证和生产测试提供了各种软件无线电设备、发生器、分析仪和收发仪。 矢量信号收发仪 VSTRF信号发生器软件无线电 USRP网络分析仪频谱和信号分析仪RF和微波开关功率传感器RF信号调理 矢量信号收发仪…

Plasticine: 面向并行模式的可重配架构

本文基于对并行模式的分层架构、数据局部性和控制流的抽象&#xff0c;提出了Plasticine架构&#xff0c;从而为并行模式计算提供更好的灵活性和更低的能耗支持。原文: Plasticine: A Reconfigurable Architecture For Parallel Patterns 摘要 近年来&#xff0c;由于可重配架构…

(十九)大数据实战——Flume数据采集框架安装部署

前言 本节内容我们主要介绍一下大数据数据采集框架flume的安装部署&#xff0c;Flume 是一款流行的开源分布式系统&#xff0c;用于高效地采集、汇总和传输大规模数据。它主要用于处理大量产生的日志数据和事件流。Flume 支持从各种数据源&#xff08;如日志文件、消息队列、数…

嵌入式学习之popen函数

相比于system输出的好处&#xff0c;popen可以直接输出运行结果 14.进程总结 需要重点掌握进程配合相关概念&#xff0c;创建进程函数fork的使用&#xff0c;理解进程创建发生了什么事&#xff0c;exec族函数&#xff0c;exec族函数配合fork使用。