AIGC:初学者使用“C知道”实现AI人脸识别

文章目录

  • 前言
  • 人脸识别介绍
  • 准备工作
  • 创作过程
    • 生成人脸识别代码
    • 下载分类文件
    • 安装 OpenCV
    • 生成人脸识别代码(图片)
  • 创作成果
  • 总结

前言

从前,我们依靠各种搜索引擎来获取内容,但随着各类数据在互联网世界的爆炸式增长,加上深度学习模型的广泛发展,我们现在不仅可以实现“遇事不决问AI”,还可以利用AI进行创作,关于人工智能生成内容(AIGC)的讨论和应用也是随处可见。

本文记录一下人工智能初学者如何使用 C知道 😄生成实现人脸识别功能的代码。

人脸识别介绍

在开始之前,先简单介绍一下人脸识别:

人脸识别技术是一种通过计算机视觉和模式识别技术来识别和验证人脸的方法。它可以从图像或视频中自动检测和识别人脸,并将其与已知的人脸进行比对。人脸识别技术主要包括以下几个步骤:

  • 人脸检测:首先,使用特定的算法和技术在图像或视频中识别出可能存在的人脸区域。

  • 特征提取:接下来,通过计算机视觉和图像处理技术,将检测到的人脸转换为数字化的特征向量。这些特征向量包括脸部的关键点、轮廓、纹理等信息。

  • 特征匹配:将提取到的人脸特征与已知的人脸数据库进行比对,通过计算相似度或距离来进行匹配。

  • 人脸识别:根据匹配结果判断是否为同一个人,并输出相应的识别结果。

人脸识别技术在安全领域、人机交互、身份认证等方面具有广泛的应用。它可以用于门禁系统、手机解锁、社交媒体标记、犯罪侦查等场景中。然而,人脸识别技术也存在一些挑战,例如光照、角度、遮挡等因素可能会影响其准确性。因此,不断的研究和改进仍然是人脸识别技术发展的方向之一。

没错,这段介绍是“C知道”生成的😄。

准备工作

  1. 安装 Python 解释器。
  2. 安装开发工具 PyCharm 。
  3. 新建一个 Python 项目。如下
    在这里插入图片描述

创作过程

生成人脸识别代码

废话不多说,直接让 C知道 帮我们生成人脸识别的代码

可以看到不仅生成了代码,还给了说明,每行代码还有注释,夫复何求哇。

接下来将生成的代码和haarcascade_frontalface_default.xml文件导入到 PyCharm。

下载分类文件

haarcascade_frontalface_default.xml文件不知道哪里下载的可以到这里下载。

安装 OpenCV

将生成的代码导入 PyCharm 后提示需要导入cv2模块,如下图

在这里插入图片描述
怎么办,不要怕,问C知道。

在这里插入图片描述

按照C知道给的指导执行pip install opencv-python 安装 OpenCV,非常nice,以后就是面向 AI 开发了。

在这里插入图片描述

一切准备就绪后直接执行代码,因为摄像头涉及到隐私,就不展示效果了,效果类似下面这张图

在这里插入图片描述

生成人脸识别代码(图片)

既然展示不了摄像头人脸识别的效果,让C知道帮忙再生成一个识别照片中人脸的代码
在这里插入图片描述

同样,将代码和一张图片导入到 PyCharm ,直接运行,效果如下

在这里插入图片描述
至此,一个简单的人脸识别功能就完成了。

创作成果

通过使用“C知道”,成功实现了人脸识别功能,而我的任务就是提问并复述需求,下面将“C知道”生成的人脸识别代码提供初学者入门参考:

摄像头人脸识别代码

import cv2# 加载人脸识别模型
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')# 打开摄像头
cap = cv2.VideoCapture(0)while True:# 读取视频流ret, frame = cap.read()# 将视频帧转换为灰度图像gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 使用人脸识别模型检测人脸faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5)# 在图像中标记人脸for (x, y, w, h) in faces:cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 3)# 显示图像cv2.imshow('Face Recognition', frame)# 按下 'q' 键退出循环if cv2.waitKey(1) & 0xFF == ord('q'):break# 释放资源
cap.release()
cv2.destroyAllWindows()

图片中人脸识别代码

import cv2# 加载人脸识别器
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')# 读取图像
image = cv2.imread('img.png')# 将图像转换为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 在灰度图像上检测人脸
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))# 在图像上绘制人脸矩形
for (x, y, w, h) in faces:cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 3)# 显示结果图像
cv2.imshow('Face Detection', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

总结

通过对创作过程的描述,足以说明 AIGC(AI生成代码)的强大,通过简单描述就可以生成合适的代码片段,即便是像我这样的人工智能初学者也可以快速实现人脸识别的功能,减少了编写代码时间和精力消耗,同时还帮助我在解决问题时提供参考和建议,从而提高开发质量和准确性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/91900.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

文献阅读:Deep Learning Enabled Semantic Communication Systems

目录 论文简介关于文章内容的总结引申出不理解的问题 论文简介 作者 Huiqiang Xie Zhijin Qin Geoffrey Ye Li Biing-Hwang Juang 发表期刊or会议 《IEEE TRANSACTIONS ON SIGNAL PROCESSING》 发表时间 2021.4 这篇论文由《Deep Learning based Semantic Communications: A…

ZooKeeper数据模型/znode节点深入

1、Znode的数据模型 1.1 Znode是什么? Znode维护了一个stat结构,这个stat包含数据变化的版本号、访问控制列表变化、还有时间戳。版本号和时间戳一起,可让Zookeeper验证缓存和协调更新。每次znode的数据发生了变化,版本号就增加。…

Ansible学习笔记9

yum_repository模块: yum_repository模块用于配置yum仓库的。 测试下: [rootlocalhost ~]# ansible group1 -m yum_repository -a "namelocal descriptionlocalyum baseurlfile:///mnt/ enabledyes gpgcheckno" 192.168.17.106 | CHANGED &g…

Unity ShaderGraph教程——基础shader

1.基本贴图shader: 基础贴图实现:主贴图、自发光贴图、光滑度贴图、自发光贴图(自发光还加入了颜色影响和按 钮开关). 步骤:最左侧操作组——新建texture2D——新建sample texture 2D承…

pdfh5在线预览pdf文件

前言 pc浏览器和ios的浏览器都可以直接在线显示pdf文件&#xff0c;但是android浏览器不能在线预览pdf文件&#xff0c;如何预览pdf文件&#xff1f; Github: https://github.com/gjTool/pdfh5 Gitee: https://gitee.com/gjTool/pdfh5 使用pdfh5预览pdf 编写预览页面 <…

docker network

docker network create <network>docker network connect <network> <container>docker network inspect <network>使用这个地址作为host即可 TODO&#xff1a;添加docker-compose

2023年全国职业院校技能大赛信息安全管理与评估网络安全渗透任务书

全国职业院校技能大赛 高等职业教育组 信息安全管理与评估 任务书 模块三 网络安全渗透、理论技能与职业素养 比赛时间及注意事项 本阶段比赛时长为180分钟&#xff0c;时间为9:00-12:00。 【注意事项】 &#xff08;1&#xff09;通过找到正确的flag值来获取得分&#xff0c;f…

Samba服务器

目录 一、什么是Samba&#xff1f; 二、Samba进程 三、Samba主要功能 四、Samba工作流程 五、Samba安全级别 六、Sam主配置文件/etc/samba/smb.conf 七、Samba服务配置案例 一、什么是Samba&#xff1f; Samba可以让linux计算机和windows计算机之间实现文件和打印机资源共享的一…

安全开发-JS应用NodeJS指南原型链污染Express框架功能实现审计WebPack打包器第三方库JQuery安装使用安全检测

文章内容 环境搭建-NodeJS-解析安装&库安装安全问题-NodeJS-注入&RCE&原型链案例分析-NodeJS-CTF题目&源码审计打包器-WebPack-使用&安全第三方库-JQuery-使用&安全 环境搭建-NodeJS-解析安装&库安装 Node.js是运行在服务端的JavaScript 文档参考…

【Unity每日一记】WheelColider组件汽车游戏的关键

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;uni…

设计模式-适配器

文章目录 一、简介二、适配器模式基础1. 适配器模式定义与分类2. 适配器模式的作用与优势3.UML图 三、适配器模式实现方式1. 类适配器模式2. 对象适配器模式3.类适配器模式和对象适配器模式对比 四、适配器模式应用场景1. 继承与接口的适配2. 跨平台适配 五、适配器模式与其他设…

2023京东蓝牙耳机行业数据分析(京东数据分析软件)

近年来&#xff0c;蓝牙耳机逐步成为穿戴设备行业的新宠&#xff0c;随着蓝牙耳机的迅速普及和发展&#xff0c;产品的市场规模不断增大&#xff0c;用户需求不断提升。 鲸参谋电商数据分析平台的数据显示&#xff0c;2023年7月份&#xff0c;京东平台上蓝牙耳机的销量将近330…