Super Resolve Dynamic Scene from Continuous Spike Streams论文笔记

摘要

近期,脉冲相机在记录高动态场景中展示了其优越的潜力。不像传统相机将一个曝光时间内的视觉信息进行压缩成像,脉冲相机连续地输出二的脉冲流来记录动态场景,因此拥有极高的时间分辨率。而现有的脉冲相机重建方法主要集中在重建和脉冲相机相同分辨率的图像上。然而,作为高时间分辨率的权衡,脉冲相机的空间分辨率是有限的。为了处理这一问题,我们设计了一种脉冲相机超分辨率框架,旨在从低分辨率的二值脉冲流中得到超分辨率的光强图像。由于相机和捕捉物体之间的相对运动,传感器同一像素上激发的脉冲无法形容外在场景中的相同点。本文利用相对运动,推导出光强与每个脉冲之间的关系,以恢复高时间分辨率和高空间分辨率的外部场景。实验结果表明,该方法可以从低分辨率的脉冲流中重建出良好的高分辨率图像。

介绍

随着实时计算机视觉应用的发展,传统数码相机的缺点逐渐暴露。传统相机通常在一个曝光窗口内积累光电信息来形成快照帧。这样的的成像原理可以为静态场景产出富含细节的清晰图片。然而,对于拥有高速移动的动态场景,移动物体上的某一点会被投影到传感器的不同像素点上,导致运动模糊。

为了解决这一问题,脉冲相机被提出。脉冲相机可以持续地监控到达的光子并且激发连续的脉冲流,从而记录高分辨率的动态场景。相比于事件相机,脉冲相机可以记录绝对的光照强度而不是相对光强变化。

在本文中,我们针对脉冲相机设计了一种全新的图像重建框架。通过利用相对运动,我们可以恢复场景的分辨率远远高于由脉冲流直接提供的分辨率。我们仔细分析了脉冲相机的成像原理,基于脉冲相机成像原理,构建了图像光强和每个脉冲之间的关系,从而可以从脉冲流中得到超像素的光强信息。文章的主要贡献如下:
1、我们为脉冲相机提出了一种超分辨率框架。
2、我们不是简单地将图像超分辨率算法应用于脉冲相机的LR(低分辨率,low resolution)重建,而是推导出光强与每个脉冲之间的关系,从而从买从流中估计像素级的超分辨率光强。
3、实验结果显示所提出的方法可以从二值LR脉冲流中重建出不错的HR光强图像,这是现有方法做不到的。

背景知识

脉冲相机的工作机制

脉冲相机包含了一系列的像素点,每一个像素点独立地记录光照强度。每一个像素包含三个主要的部分:感光器、积分器和比较器。感光器从外部场景捕获入射光,并将光强转换为积分器可以识别的电压。积分器对转化而来的电荷做累加,比较器持续地检测积累的信号。一旦达到阈值 θ \theta θ,脉冲则会被激发,积分器重置,开始新一轮的“积累与发射”循环。

由于每一个像素独立工作,我们可以将我们的讨论限定在一个像素 p = ( r , c ) p=(r,c) p=(r,c)上。 p p p t t t时刻的电荷量可以表示为:
A ( t ) = ∫ Ω p ∫ 0 t α ⋅ I ( z , x ) d x d z m o d θ (1) A(t)=\int_{\Omega_p}\int_0^t\alpha\cdot I(z,x)dxdz\mod\theta\tag{1} A(t)=Ωp0tαI(z,x)dxdzmodθ(1)
这里, Ω p \Omega_p Ωp表示像素 p p p包含的空间区域, I ( z , t ) I(z,t) I(z,t)表示 t t t时刻 z = ( x , y ) z=(x,y) z=(x,y)位置上的光照强度, α \alpha α表示光电转化效率。脉冲可以在任意的时间 t t t被激发,但是相机只能以离散时间二值信号 S ( n ) S(n) S(n)的形式读出脉冲(如图二所示)。具体来说,相机以一个固定的短时间间隙 T T T来检查flag,如果 t t t时刻(其中 ( ( n − 1 ) T < t ≤ n T ) ((n-1)T<t≤nT) ((n1)T<tnT))有flag,则 S ( n ) = 1 S(n)=1 S(n)=1。否则, S ( n ) = 0 S(n)=0 S(n)=0。当光子连续到达时,传感器上的像素会同时独立地进行工作,激发出脉冲来表示特定数量光子的到达。随着时间的推进,相机会产生一些列的二值脉冲 S ∈ { 0 , 1 } H × W × N S\in \{0,1\}^{H\times W\times N } S{0,1}H×W×N(如图一(a)所示)。
在这里插入图片描述

在这里插入图片描述

问题描述

脉冲相机的目的是记录高速运动场景的动态光强变化过程。一旦脉冲阵列被捕捉到,我们旨在恢复出任何时刻的瞬时光强。特别是当考虑到脉冲相机有限的空间分辨率,我们的目标是超分辨高质量的光强图像与细节。我们没有采用简单结合脉冲重建算法和现有图像超分辨率算法的方法,而是直接估计每一个像素对应的超分辨率强度。这是一个病态的逆问题,可以表示为如下的形式。给定脉冲阵列 S ∈ { 0 , 1 } H × W × N S\in\{0,1\}^{H\times W\times N } S{0,1}H×W×N,我们的目标是从低分辨率的脉冲阵列中恢复高质量的高分辨率强度图像 I H D ∈ [ 0 , 255 ] c H × c W × c N I^{HD}\in[0,255]^{cH\times cW\times cN } IHD[0,255]cH×cW×cN,其中 c c c是放大因子。

方法

如图三所示,由于相机和物体之间的相对运动,传感器同一像素所激发的脉冲不再能描述物体上的相同点,而是记录了不同位置的光强。也就是说每一个脉冲会被映射到场景中的不同位置。通过合理地探索相机和场景之间的相对运动,恢复更高分辨率的场景是可能的。为此,我们开发了一个运动引导的脉冲相机超分辨率(MGSR, motion-guided spike camera super-resolution)框架,以从低分辨率的脉冲流中得到超分辨率图像。
在这里插入图片描述

强度脉冲关系

每一个脉冲对应了一定量的光子 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te),其中 p = ( r , c ) p=(r,c) p=(r,c)表示像素的位置, t s t_s ts t e t_e te分别表示当前脉冲循环的开始和结束时间。基于公式(1),脉冲 s s s和强度 I I I之间的关系可以表示为:
θ = ∫ Ω p ∫ t s t e α ⋅ I ( z , t ) d t d z (2) \theta=\int_{\Omega_p}\int_{t_s}^{t_e}\alpha\cdot I(z,t)dtdz\tag{2} θ=ΩptsteαI(z,t)dtdz(2)
假设我们打算重建 k k k时刻的场景。基于灰度一致性假设,给定任意时刻某一点的光强 I ( z , t ) I(z,t) I(z,t),都可以将其转换为 k k k时刻对应物体点的光强 I ( z + u t → k ( z ) , k ) I(z+u_{t\rightarrow k}(z),k) I(z+utk(z),k)。其中 u t → k ( z ) u_{t\rightarrow k}(z) utk(z)表示将 t t t时刻上 z z z位置映射到 k k k时刻对应位置的偏移量。因此,我们可以构建场景强度和任意脉冲 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te)之间的模型:
θ = ∫ Ω p ∫ t s t e α ⋅ I ( z , k ) M s ( z , t ) d t d z (3) \theta=\int_{\Omega_p}\int_{t_s}^{t_e}\alpha\cdot I(z,k)\mathcal{M}_s(z,t)dtdz\tag{3} θ=ΩptsteαI(z,k)Ms(z,t)dtdz(3)
这里, Ω \Omega Ω表示相机传感器的感受野, I ( z , k ) I(z,k) I(z,k)表示 k k k时刻 z z z位置的光强, M s ( z , t ) \mathcal{M}_s(z,t) Ms(z,t)是二值mask,表示强度 I ( z , k ) I(z,k) I(z,k)是否对 t t t时刻的脉冲 s s s有贡献。也就是说,如果 z z z的对应点 z + u k → t ( z ) z+u_{k\rightarrow t}(z) z+ukt(z)处在像素 p p p包含的空间区域,则 I ( z , k ) I(z,k) I(z,k)对像素有贡献,将 M s ( z , t ) \mathcal{M}_s(z,t) Ms(z,t)设置为1。否则 M s ( z , t ) \mathcal{M}_s(z,t) Ms(z,t)被设为0。从而可以得到 M s ( z , t ) \mathcal{M}_s(z,t) Ms(z,t)的表达式:
M s ( z , t ) = { 1 , z + u k → t ( z ) ∈ Ω p 0 , o t h e r w i s e (4) \mathcal{M}_s(z,t)=\begin{cases} 1, \quad z+u_{k\rightarrow t}(z)\in \Omega_{p}\\ 0, \quad otherwise\\ \end{cases}\tag{4} Ms(z,t)={1,z+ukt(z)Ωp0,otherwise(4)
其中 Ω p \Omega_p Ωp表示 p p p覆盖的空间区域。为了简单起见,我们使用 I k I_k Ik来表示 k k k时刻场景的光照强度。考虑到 I k ( z ) I_k(z) Ik(z)在时间上的连续性,公式(3)可以改写成:
θ = ∫ Ω ∫ t s t e α ⋅ I k ( z ) ⋅ M s ( z , t ) d t d z = ∫ Ω α ⋅ I k ( z ) ( ∫ t s t e M s ( z , t ) d t ) d z = ∫ Ω α ⋅ I k ( z ) ⋅ W s ( z ) d z (5) \theta=\int_{\Omega}\int_{t_s}^{t_e}\alpha\cdot I_k(z)\cdot \mathcal{M}_s(z,t)dtdz=\int_{\Omega}\alpha\cdot I_k(z)(\int_{t_s}^{t_e}\mathcal{M}_s(z,t)dt)dz=\int_{\Omega}\alpha\cdot I_k(z)\cdot \mathcal{W}_s(z)dz\tag{5} θ=ΩtsteαIk(z)Ms(z,t)dtdz=ΩαIk(z)(tsteMs(z,t)dt)dz=ΩαIk(z)Ws(z)dz(5)
其中 W s ( z ) = ∫ t s t e M s ( z , t ) d t \mathcal{W}_s(z)=\int_{t_s}^{t_e}\mathcal{M}_s(z,t)dt Ws(z)=tsteMs(z,t)dt代表 I k ( z ) I_k(z) Ik(z)对脉冲 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te)的贡献程度。

脉冲相机超像素

基于以上的分析,任意的 I k ( z ) I_k(z) Ik(z)和脉冲 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te)之间的关系可以被建模。为了超像素化光强图像,我们可以对重建平面进行重采样,建立如下的关系:
θ = ∑ q α ⋅ I k H R ( q ) ⋅ W s ( q ) (6) \theta=\sum_q\alpha\cdot I_k^{HR}(q)\cdot\mathcal{W}_s(q)\tag{6} θ=qαIkHR(q)Ws(q)(6)
这里 q = ( m , n ) q=(m,n) q=(m,n)表示 I k H R I_k^{HR} IkHR的坐标位置, W s ( q ) \mathcal{W}_s(q) Ws(q)表示 I k H R ( q ) I_k^{HR}(q) IkHR(q)对脉冲 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te)的贡献程度。一旦在 k k k时刻附近有足够的脉冲被积累,我们可以通过最小化下面的损失函数 J ( I K h r ) J(I_K^{hr}) J(IKhr)来超分辨率化 I k H R I_k^{HR} IkHR
J ( I K H R ) = ∑ s = 1 N ∣ ∣ α ⋅ W s I k H R − θ ∣ ∣ 2 2 (7) J(I_K^{HR})=\sum_{s=1}^N||\alpha\cdot\mathcal{W}_sI_k^{HR}-\theta||_2^2\tag{7} J(IKHR)=s=1N∣∣αWsIkHRθ22(7)
其中 N N N表示选定时间框内的脉冲数量。 W s ∈ R 1 × M \mathcal{W}_s\in\mathbb{R}^{1\times M} WsR1×M M = c H × c W M=cH\times cW M=cH×cW表示待重建的高分辨率图像中的像素个数。

为了解决这一问题,我们设计了一种运动辅助的脉冲相机超分辨率(MGSR, motion-guided spike camera super resolution)框架,如图四所示。
在这里插入图片描述
首先,一个基础的亮度推测算法被运用在脉冲流 S S S中,生成一系列基础的亮度图像 { I t L R } , t ∈ ϕ k \{I_t^{LR}\},t\in\phi_k {ItLR},tϕk ϕ k \phi_k ϕk的一个典型选择是 { k , k ± 1 , k ± 2 , ⋅ ⋅ ⋅ } \{k,k±1,k±2,\cdot\cdot\cdot\} {k,k±1,k±2,}。有了基础的重建,我们可以估计出不同帧的位移量并且将 I k H R I_k^{HR} IkHR上的点映射到其他帧中。然后我们可以进一步计算出每个亮度图像像素 I k H R ( q ) I_k^{HR}(q) IkHR(q)对每个脉冲 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te)的贡献程度(这里 q q q指的是图像上的像素点, p p p指的是传感器上的像素点,可以通过图5或者更加直观的理解),构建出一系列的贡献图 { W s } \{\mathcal{W}_s\} {Ws}。基于贡献图 { W s } \{\mathcal{W}_s\} {Ws},高分辨率图像 I H R I^{HR} IHR可以通过求解公式(7)得到。
在这里插入图片描述

光强推测

假设一个短脉冲间隔内的光照强度是稳定的,我们粗略地推测出瞬时光强:
I t L R ( p ) = θ α ⋅ ( t e − t s ) (8) I_t^{LR}(p)=\frac{\theta}{\alpha\cdot(t_e-t_s)}\tag{8} ItLR(p)=α(tets)θ(8)
其中, t e < t < t s t_e<t<t_s te<t<ts。值得注意的是,这些基本的重建只是用来估计相对运动。

运动估计

我们使用光流法来进行粗略估计,从而得到关键帧 I k L R I_k^{LR} IkLR到参考帧 I t L R I_t^{LR} ItLR的运动场信息:
u k → t = F ( I k L R , I t L R ) (9) u_{k\rightarrow t}=\mathcal{F}(I_k^{LR},I_t^{LR})\tag{9} ukt=F(IkLR,ItLR)(9)
其中 F ( ⋅ ) \mathcal{F}(\cdot) F()表示光流法。 u k → t = ( u k → t h , u k → t v ) u_{k\rightarrow t}=(u_{k\rightarrow t}^h,u_{k\rightarrow t}^v) ukt=(ukth,uktv)表示 I k L R I_k^{LR} IkLR I t L R I_t^{LR} ItLR的运动场信息,可以将 I k L R I_k^{LR} IkLR映射到 I t L R I_t^{LR} ItLR

权重计算

给定运动场信息 u k → t u_{k\rightarrow t} ukt,给定任意点 z z z,我们都可以轻松地根据公式(4)推断出是否 I k H R ( z ) I_k^{HR}(z) IkHR(z)对脉冲 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te)有贡献。然后可以计算出每个图像像素 I k H R ( q ) I_k^{HR}(q) IkHR(q)对脉冲 s : ( p , t s , t e ) s:(p,t_s,t_e) s:(p,ts,te)的权重(贡献程度):
W s ( q ) = ∫ z ∈ Ω q ∫ t s t e M s ( z , t ) d t d z (10) \mathcal{W}_s(q)=\int_{z\in \Omega_q}\int_{t_s}^{t_e}\mathcal{M}_s(z,t)dtdz\tag{10} Ws(q)=zΩqtsteMs(z,t)dtdz(10)
其中 Ω q \Omega_q Ωq表示像素 q q q I k H R I_k^{HR} IkHR中覆盖的范围。由于相机和场景的相对运动,一个脉冲通常通常和和 I k H R I_k^{HR} IkHR中的多个像素有关。相关像素的数量也会随着运动速度和脉冲生命周期 t e − t s t_e-t_s tets的增加而增加。图5展示了权重的计算,图6真实了不同相对运动对应的权重图。
在这里插入图片描述

超像素成像

一旦足够的脉冲被积累,我们可以通过解公式(7)来得到 c H × c W cH\times cW cH×cW的超像素图像。在本文中,我们使用了梯度下降法来求解这个问题,可以被表示为:
I k H R : = I K H R − γ ⋅ ∇ I k H R J ( I k H R ; W s ) (11) I_k^{HR}:=I_K^{HR}-\gamma\cdot\nabla_{I_k^{HR}}J(I_k^{HR};\mathcal{W}_s)\tag{11} IkHR:=IKHRγIkHRJ(IkHR;Ws)(11)
其中 γ \gamma γ是更新梯度。特别地,我们也可以使用这个算法作为一个一般的重建算法,此时我们可以将 c c c设置为1,以重建与脉冲流相同空间分辨率的图像。在算法1中总结了所提出的MGSR方法。
在这里插入图片描述

实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/94653.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【云计算•云原生】5.云原生之初识DevOps

文章目录 1.DevOps背景2.DevOps概念3.DevOps工具链 1.DevOps背景 软件开发必须包含两个团队&#xff1a;开发团队和运维团队 开发团队负责开发项目&#xff0c;系统迭代更新运维团队负责项目测试以及部署上线&#xff0c;维持系统稳定运行 一个软件周期中是由这两个团队相互…

Python入门教程 - 判断语句(二)

目录 一、布尔类型 二、比较运算符 三、if判断语句 一、布尔类型 True False result1 10 > 5 result2 10 < 5 print(result1) print(result2) print(type(result1)) True False <class bool> 二、比较运算符 ! > < > < 比较运算的结果是布尔…

【Django】让SQLite数据库中表名支持重命名的方法

修改了数据库表名之后&#xff0c;更新数据库时跳错&#xff1a; django.db.utils.NotSupportedError: Renaming the japi_api_info table while in a transaction is not supported on SQLite < 3.26 because it would break referential integrity. Try adding atomic F…

又一关键系统上线,理想车云和自动驾驶系统登陆OceanBase

8 月 1 日&#xff0c;理想汽车公布 7 月交付数据&#xff0c;理想汽车 2023 年 7 月共交付新车 34,134 辆&#xff0c;同比增长 227.5%&#xff0c;并已连续两个月交付量突破三万。至此&#xff0c;理想汽车 2023 年累计交付量已经达到 173,251 辆&#xff0c;远超 2022 年全年…

mybatis源码学习-2-项目结构

写在前面,这里会有很多借鉴的内容,有以下三个原因 本博客只是作为本人学习记录并用以分享,并不是专业的技术型博客笔者是位刚刚开始尝试阅读源码的人,对源码的阅读流程乃至整体架构并不熟悉,观看他人博客可以帮助我快速入门如果只是笔者自己观看,难免会有很多弄不懂乃至理解错误…

VBA技术资料MF51:VBA_在Excel中突出显示唯一值

【分享成果&#xff0c;随喜正能量】世间万物&#xff0c;因果循环不休&#xff0c;你的善心善行&#xff0c;都可能成为你的善缘善果。每天忆佛念佛&#xff0c;每天都在佛菩萨的加持下生活&#xff0c;自然吉祥如意&#xff0c;法喜充满。 。 我给VBA的定义&#xff1a;VBA是…

ARM编程模型-状态模式

ARM的两种工作状态 大部分的ARM处理器都实现了两种指令集&#xff0c;32位ARM指令集和16位Thumb指令集&#xff0c;看生成的机器码是32位的还是16位的 ARM v6引入了新的指令集Thumb-2,能够提供32位和16位的混合指令&#xff0c;在增强了灵活性的同时保持了代码的高密度。 ARM的…

Android 1.1 背景相关与系统架构分析

目录 1.1 背景相关与系统架构分析 分类 Android 基础入门教程 1.Android背景与当前的状况 2.Android系统特性与平台架构 系统特性&#xff1a; 平台架构图&#xff1a; 架构的简单理解&#xff1a; 3.本节小结&#xff1a; 1.1 背景相关与系统架构分析 分类 Android 基础…

第9章 函数

本章介绍以下内容&#xff1a; 关键字&#xff1a;return 运算符&#xff1a;*&#xff08;一元&#xff09;、&&#xff08;一元&#xff09; 函数及其定义方式 如何使用参数和返回值 如何把指针变量用作函数参数 函数类型 ANSI C原型 递归 如何组织程序&#xff1f;C的设…

【网络安全带你练爬虫-100练】第19练:使用python打开exe文件

目录 一、目标1&#xff1a;调用exe文件 二、目标2&#xff1a;调用exe打开文件 一、目标1&#xff1a;调用exe文件 1、subprocess 模块允许在 Python 中启动一个新的进程&#xff0c;并与其进行交互 2、subprocess.run() 函数来启动exe文件 3、subprocess.run(["文件路…

SpringCloudAlibaba Gateway(一)简单集成

SpringCloudAlibaba Gateway(一)简单集成 随着服务模块的增加&#xff0c;一定会产生多个接口地址&#xff0c;那么客户端调用多个接口只能使用多个地址&#xff0c;维护多个地址是很不方便的&#xff0c;这个时候就需要统一服务地址。同时也可以进行统一认证鉴权的需求。那么服…

QML与C++的交互操作

QML旨在通过C 代码轻松扩展。Qt QML模块中的类使QML对象能够从C 加载和操作&#xff0c;QML引擎与Qt元对象系统集成的本质使得C 功能可以直接从QML调用。这允许开发混合应用程序&#xff0c;这些应用程序是通过混合使用QML&#xff0c;JavaScript和C 代码实现的。除了从QML访问…