自然语言处理(六):词的相似性和类比任务

词的相似性和类比任务

在前面的章节中,我们在一个小的数据集上训练了一个word2vec模型,并使用它为一个输入词寻找语义相似的词。实际上,在大型语料库上预先训练的词向量可以应用于下游的自然语言处理任务,为了直观地演示大型语料库中预训练词向量的语义,让我们将预训练词向量应用到词的相似性和类比任务中。

文章内容来自李沐大神的《动手学深度学习》并加以我的理解,感兴趣可以去https://zh-v2.d2l.ai/查看完整书籍


文章目录

  • 词的相似性和类比任务
  • 加载预训练词向量
  • 应用预训练词向量
    • 词相似度
    • 词类比


加载预训练词向量

以下列出维度为50、100和300的预训练GloVe嵌入,可从GloVe网站下载。预训练的fastText嵌入有多种语言。这里我们使用可以从fastText网站下载300维度的英文版本(“wiki.en”)。

import os
import torch
from torch import nn
from d2l import torch as d2l
#@save
d2l.DATA_HUB['glove.6b.50d'] = (d2l.DATA_URL + 'glove.6B.50d.zip','0b8703943ccdb6eb788e6f091b8946e82231bc4d')#@save
d2l.DATA_HUB['glove.6b.100d'] = (d2l.DATA_URL + 'glove.6B.100d.zip','cd43bfb07e44e6f27cbcc7bc9ae3d80284fdaf5a')#@save
d2l.DATA_HUB['glove.42b.300d'] = (d2l.DATA_URL + 'glove.42B.300d.zip','b5116e234e9eb9076672cfeabf5469f3eec904fa')#@save
d2l.DATA_HUB['wiki.en'] = (d2l.DATA_URL + 'wiki.en.zip','c1816da3821ae9f43899be655002f6c723e91b88')

为了加载这些预训练的GloVe和fastText嵌入,我们定义了以下TokenEmbedding类。

#@save
class TokenEmbedding:"""GloVe嵌入"""def __init__(self, embedding_name):self.idx_to_token, self.idx_to_vec = self._load_embedding(embedding_name)self.unknown_idx = 0self.token_to_idx = {token: idx for idx, token inenumerate(self.idx_to_token)}def _load_embedding(self, embedding_name):idx_to_token, idx_to_vec = ['<unk>'], []data_dir = d2l.download_extract(embedding_name)# GloVe网站:https://nlp.stanford.edu/projects/glove/# fastText网站:https://fasttext.cc/with open(os.path.join(data_dir, 'vec.txt'), 'r') as f:for line in f:elems = line.rstrip().split(' ')token, elems = elems[0], [float(elem) for elem in elems[1:]]# 跳过标题信息,例如fastText中的首行if len(elems) > 1:idx_to_token.append(token)idx_to_vec.append(elems)idx_to_vec = [[0] * len(idx_to_vec[0])] + idx_to_vecreturn idx_to_token, torch.tensor(idx_to_vec)def __getitem__(self, tokens):indices = [self.token_to_idx.get(token, self.unknown_idx)for token in tokens]vecs = self.idx_to_vec[torch.tensor(indices)]return vecsdef __len__(self):return len(self.idx_to_token)

下面我们加载50维GloVe嵌入(在维基百科的子集上预训练)。创建TokenEmbedding实例时,如果尚未下载指定的嵌入文件,则必须下载该文件。

glove_6b50d = TokenEmbedding('glove.6b.50d')

输出词表大小。词表包含400000个词(词元)和一个特殊的未知词元。

len(glove_6b50d)

在这里插入图片描述

我们可以得到词表中一个单词的索引,反之亦然。

glove_6b50d.token_to_idx['beautiful'], glove_6b50d.idx_to_token[3367]

在这里插入图片描述

应用预训练词向量

使用加载的GloVe向量,我们将通过下面的词相似性和类比任务中来展示词向量的语义。

词相似度

为了根据词向量之间的余弦相似性为输入词查找语义相似的词,我们实现了以下knn( k k k近邻)函数。

def knn(W, x, k):# 增加1e-9以获得数值稳定性cos = torch.mv(W, x.reshape(-1,)) / (torch.sqrt(torch.sum(W * W, axis=1) + 1e-9) *torch.sqrt((x * x).sum()))_, topk = torch.topk(cos, k=k)return topk, [cos[int(i)] for i in topk]

然后,我们使用TokenEmbedding的实例embed中预训练好的词向量来搜索相似的词。

def get_similar_tokens(query_token, k, embed):topk, cos = knn(embed.idx_to_vec, embed[[query_token]], k + 1)for i, c in zip(topk[1:], cos[1:]):  # 排除输入词print(f'{embed.idx_to_token[int(i)]}:cosine相似度={float(c):.3f}')

glove_6b50d中预训练词向量的词表包含400000个词和一个特殊的未知词元。排除输入词和未知词元后,我们在词表中找到与“chip”一词语义最相似的三个词。

get_similar_tokens('chip', 3, glove_6b50d)

在这里插入图片描述
下面输出与“baby”和“beautiful”相似的词。

get_similar_tokens('baby', 3, glove_6b50d)

在这里插入图片描述

get_similar_tokens('beautiful', 3, glove_6b50d)

在这里插入图片描述

词类比

除了找到相似的词,我们还可以将词向量应用到词类比任务中。 例如,“man” : “woman” :: “son” : “daughter”是一个词的类比。 “man”是对“woman”的类比,“son”是对“daughter”的类比。 具体来说,词类比任务可以定义为: 对于单词类比 a : b : c : d a:b:c:d a:b:c:d,给出前三个词 a a a b b b c c c,找到 d d d。 用 v e c ( w ) vec(w) vec(w)表示词 w w w的向量, 为了完成这个类比,我们将找到一个词, 其向量与 v e c ( c ) + v e c ( b ) − v e c ( a ) vec(c)+vec(b)-vec(a) vec(c)+vec(b)vec(a)的结果最相似。

def get_analogy(token_a, token_b, token_c, embed):vecs = embed[[token_a, token_b, token_c]]x = vecs[1] - vecs[0] + vecs[2]topk, cos = knn(embed.idx_to_vec, x, 1)return embed.idx_to_token[int(topk[0])]  # 删除未知词

让我们使用加载的词向量来验证“male-female”类比。

get_analogy('man', 'woman', 'son', glove_6b50d)

在这里插入图片描述
下面完成一个“首都-国家”的类比: “beijing” : “china” :: “tokyo” : “japan”。 这说明了预训练词向量中的语义。

get_analogy('beijing', 'china', 'tokyo', glove_6b50d)

在这里插入图片描述
另外,对于“bad” : “worst” :: “big” : “biggest”等“形容词-形容词最高级”的比喻,预训练词向量可以捕捉到句法信息。

get_analogy('bad', 'worst', 'big', glove_6b50d)

在这里插入图片描述
为了演示在预训练词向量中捕捉到的过去式概念,我们可以使用“现在式-过去式”的类比来测试句法:“do” : “did” :: “go” : “went”。

get_analogy('do', 'did', 'go', glove_6b50d)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/94960.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

详解 SpringMVC 的 @RequestMapping 注解

文章目录 1、RequestMapping注解的功能2、RequestMapping注解的位置3、RequestMapping注解的value属性4、RequestMapping注解的method属性5、RequestMapping注解的params属性&#xff08;了解&#xff09;6、RequestMapping注解的headers属性&#xff08;了解&#xff09;7、Sp…

面试官:说一下 MyBatis 的一级缓存和二级缓存 ?

目录 1. MyBatis 的缓存机制 2. 为什么不默认开启 MyBatis 的二级缓存 3. MyBatis 如何开启二级缓存 4. MyBatis 有哪些缓存清除策略 1. MyBatis 的缓存机制 MyBayis 中包含两级缓存&#xff1a;一级缓存和二级缓存 1. 一级缓存是 SqlSession 级别的&#xff0c;是 MyBati…

swagger 接口测试,用 python 写自动化时该如何处理?

在使用Python进行Swagger接口测试时&#xff0c;可以使用requests库来发送HTTP请求&#xff0c;并使用json库和yaml库来处理响应数据。以下是一个简单的示例代码&#xff1a; import requests import json import yaml# Swagger API文档地址和需要测试的接口路径 swagger_url …

Nginx从入门到精通(超级详细)

文章目录 一、什么是Nginx1、正向代理2、反向代理3、负载均衡4、动静分离 二、centos7环境安装Nginx1、安装依赖2、下载安装包3、安装4、启动5、停止 三、Nginx核心基础知识1、nginx核心目录2、常用命令3、默认配置文件讲解4、Nginx虚拟主机-搭建前端静态服务器5、使用nignx搭建…

Docker技术--Docker简介和架构

1.Docker简介 (1).引入 我们之前学习了EXSI&#xff0c;对于虚拟化技术有所了解&#xff0c;但是我们发现类似于EXSI这样比较传统的虚拟化技术是存在着一定的缺陷:所占用的资源比较多&#xff0c;简单的说&#xff0c;就是你需要给每一个用户提供一个操作平台&#xff0c;这一个…

npm报错sass

1.删除node模块 2.删除node-sass&#xff1a; npm uninstall node-sass 3.重新下载对应版本node-sass&#xff1a; npm i node-sass7.0.3&#xff08;指定版本 控制台报错什么版本就写什么版本&#xff09; 4.再运行项目 或者

Java运行时jar时终端输出的中文日志是乱码

运行Jar时在控制台输出的中文日志全是乱码&#xff0c;这是因为cmd/bash默认的编码是GBK&#xff0c;只要把cmd的编码改成UTF-8即可 两种方式修改&#xff1a;临时修改和注册表永久修改 临时修改 只对当前的cmd页面有效&#xff0c;关闭后重新打开都会恢复成GBK, 打开cmd&am…

实战黑马苍穹外卖项目8.1-10.1

文章目录 软件开发的基本流程用户层网关层应用层数据层工具 数据库设计导入准备好的前端和后端工程基础工程代码分析完成员工功能完成菜品功能入门Redis实现店铺营业HttpClient微信小程序开发缓存Spring Cache实现地址功能用户下单实现订单推送状态apache对应的工具使用项目用到…

【LeetCode】85.最大矩形

题目 给定一个仅包含 0 和 1 、大小为 rows x cols 的二维二进制矩阵&#xff0c;找出只包含 1 的最大矩形&#xff0c;并返回其面积。 示例 1&#xff1a; 输入&#xff1a;matrix [["1","0","1","0","0"],["1&quo…

Ubuntu学习---跟着绍发学linux课程记录(第二部分)

文章目录 7 文件权限7.1 文件的权限7.2 修改文件权限7.3 修改文件的属主 8、可执行脚本8.2Shell脚本8.3python脚本的创建 9Shell9.1Shell中的变量9.2 环境变量9.3用户环境变量 学习链接: Ubuntu 21.04乌班图 Linux使用教程_60集Linux课程 所有资料在 http://afanihao.cn/java …

MPI之虚拟进程拓扑

什么是虚拟进程拓扑 在很多并行应用进程中&#xff0c;进程的线性排列不能充分的反映进程间在逻辑上的通信模型&#xff0c;通常由问题几何和所用的算法决定&#xff0c;进程经常被排列成二维或者三维网络形式的拓扑模型而通常用一个图来描述逻辑进程排列&#xff0c;此种逻辑…

MySQL高阶语句(三)

一、NULL值 在 SQL 语句使用过程中&#xff0c;经常会碰到 NULL 这几个字符。通常使用 NULL 来表示缺失 的值&#xff0c;也就是在表中该字段是没有值的。如果在创建表时&#xff0c;限制某些字段不为空&#xff0c;则可以使用 NOT NULL 关键字&#xff0c;不使用则默认可以为空…