自然语言处理(五):子词嵌入(fastText模型)

子词嵌入

在英语中,“helps”“helped”和“helping”等单词都是同一个词“help”的变形形式。“dog”和“dogs”之间的关系与“cat”和“cats”之间的关系相同,“boy”和“boyfriend”之间的关系与“girl”和“girlfriend”之间的关系相同。在法语和西班牙语等其他语言中,许多动词有40多种变形形式,而在芬兰语中,名词最多可能有15种变形。在语言学中,形态学研究单词形成和词汇关系。但是,word2vec和GloVe都没有对词的内部结构进行探讨。

文章内容来自李沐大神的《动手学深度学习》并加以我的理解,感兴趣可以去https://zh-v2.d2l.ai/查看完整书籍


文章目录

  • 子词嵌入
  • fastText模型
  • 字节对编码


fastText模型

回想一下词在word2vec中是如何表示的。在跳元模型和连续词袋模型中,同一词的不同变形形式直接由不同的向量表示,不需要共享参数。为了使用形态信息,fastText模型提出了一种子词嵌入方法,其中子词是一个字符 n n n-gram (Bojanowski et al., 2017)。fastText可以被认为是子词级跳元模型,而非学习词级向量表示,其中每个中心词由其子词级向量之和表示。

fastText是一种用于自然语言处理的词向量表示和文本分类的模型。与传统的词向量模型(如word2vec)不同,fastText不仅考虑了单词级别的表示,还考虑了子词(n-grams)级别的表示。这使得fastText能够更好地处理词汇中的复杂性和稀有词。

以下是fastText模型的主要特点和工作原理:

  1. 子词表示:fastText将每个单词表示为其字符级别n-grams的平均值。例如,对于单词"apple",它可以表示为"ap"、“app”、“ppl”、"ple"等子词的平均向量。这样做的好处是能够捕捉到词汇的内部结构和形态信息,对于处理未登录词(out-of-vocabulary)和稀有词具有优势。

  2. 分层Softmax:fastText使用了分层Softmax来加速训练过程。传统的词向量模型在训练时需要计算输出层中所有词的概率,而分层Softmax将词汇表划分为多个层级,每个层级包含一部分词汇。这样可以减少计算量,并加快训练速度。

  3. 文本分类:除了词向量表示,fastText还可以用于文本分类任务。它使用了基于词袋(bag-of-words)模型的方法,将文本表示为词向量的加权和,并通过softmax函数进行分类预测。

fastText是一个开源项目,由Facebook AI Research团队开发。它以其快速训练速度、对稀有词的处理能力和在文本分类任务上的良好表现而受到广泛关注和应用。

让我们来说明如何以单词“where”为例获得fastText中每个中心词的子词。首先,在词的开头和末尾添加特殊字符“<”和“>”,以将前缀和后缀与其他子词区分开来。 然后,从词中提取字符 n n n-gram。 例如,值 n = 3 n=3 n=3时,我们将获得长度为3的所有子词: “<wh”“whe”“her”“ere”“re>”和特殊子词“”。

在fastText中,对于任意词 w w w,用 C w C_w Cw表示其长度在3和6之间的所有子词与其特殊子词的并集。词表是所有词的子词的集合。假设 z g z_g zg是词典中的子词 g g g的向量,则跳元模型中作为中心词的词 w w w的向量 v w v_w vw是其子词向量的和:
v w = ∑ g ∈ C w z g v_w=\sum_{g\in C_w}z_g vw=gCwzg
fastText的其余部分与跳元模型相同。与跳元模型相比,fastText的词量更大,模型参数也更多。此外,为了计算一个词的表示,它的所有子词向量都必须求和,这导致了更高的计算复杂度。然而,由于具有相似结构的词之间共享来自子词的参数,罕见词甚至词表外的词在fastText中可能获得更好的向量表示。

字节对编码

在fastText中,所有提取的子词都必须是指定的长度,例如 3 3 3 6 6 6,因此词表大小不能预定义。为了在固定大小的词表中允许可变长度的子词,我们可以应用一种称为字节对编码(Byte Pair Encoding,BPE)的压缩算法来提取子词 (Sennrich et al., 2015)。

字节对编码执行训练数据集的统计分析,以发现单词内的公共符号,诸如任意长度的连续字符。从长度为1的符号开始,字节对编码迭代地合并最频繁的连续符号对以产生新的更长的符号。请注意,为提高效率,不考虑跨越单词边界的对。最后,我们可以使用像子词这样的符号来切分单词。字节对编码及其变体已经用于诸如GPT-2 (Radford et al., 2019)和RoBERTa (Liu et al., 2019)等自然语言处理预训练模型中的输入表示。在下面,我们将说明字节对编码是如何工作的。

首先,我们将符号词表初始化为所有英文小写字符、特殊的词尾符号’_‘和特殊的未知符号’[UNK]'。

import collectionssymbols = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm','n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z','_', '[UNK]']

因为我们不考虑跨越词边界的符号对,所以我们只需要一个字典raw_token_freqs将词映射到数据集中的频率(出现次数)。注意,特殊符号’_'被附加到每个词的尾部,以便我们可以容易地从输出符号序列(例如,“a_all er_man”)恢复单词序列(例如,“a_all er_man”)。由于我们仅从单个字符和特殊符号的词开始合并处理,所以在每个词(词典token_freqs的键)内的每对连续字符之间插入空格。换句话说,空格是词中符号之间的分隔符。

raw_token_freqs = {'fast_': 4, 'faster_': 3, 'tall_': 5, 'taller_': 4}
token_freqs = {}
for token, freq in raw_token_freqs.items():token_freqs[' '.join(list(token))] = raw_token_freqs[token]
token_freqs

在这里插入图片描述

我们定义以下get_max_freq_pair函数,其返回词内最频繁的连续符号对,其中词来自输入词典token_freqs的键。

def get_max_freq_pair(token_freqs):pairs = collections.defaultdict(int)for token, freq in token_freqs.items():symbols = token.split()for i in range(len(symbols) - 1):# “pairs”的键是两个连续符号的元组pairs[symbols[i], symbols[i + 1]] += freqreturn max(pairs, key=pairs.get)  # 具有最大值的“pairs”键

作为基于连续符号频率的贪心方法,字节对编码将使用以下merge_symbols函数来合并最频繁的连续符号对以产生新符号。

def merge_symbols(max_freq_pair, token_freqs, symbols):symbols.append(''.join(max_freq_pair))new_token_freqs = dict()for token, freq in token_freqs.items():new_token = token.replace(' '.join(max_freq_pair),''.join(max_freq_pair))new_token_freqs[new_token] = token_freqs[token]return new_token_freqs

解释一下new_token = token.replace(’ ‘.join(max_freq_pair),’'.join(max_freq_pair))
max_freq_pair 是一个元组,表示最高频率的一对符号。例如,假设 max_freq_pair = ('a', 'b')
' '.join(max_freq_pair) 将最高频率符号对中的两个符号用空格连接起来,生成一个字符串。对于上述示例,结果将是 'a b'
''.join(max_freq_pair) 将最高频率符号对中的两个符号直接连接起来,生成一个新的合并后的符号。对于上述示例,结果将是 'ab'
token.replace(' '.join(max_freq_pair), ''.join(max_freq_pair)) 则使用生成的字符串和新的合并后的符号对标记进行替换操作。它将标记中所有出现的最高频率符号对 'a b' 替换为合并后的符号 'ab',得到新的合并标记。

现在,我们对词典token_freqs的键迭代地执行字节对编码算法。在第一次迭代中,最频繁的连续符号对是’t’和’a’,因此字节对编码将它们合并以产生新符号’ta’。在第二次迭代中,字节对编码继续合并’ta’和’l’以产生另一个新符号’tal’。

num_merges = 10
for i in range(num_merges):max_freq_pair = get_max_freq_pair(token_freqs)token_freqs = merge_symbols(max_freq_pair, token_freqs, symbols)print(f'合并# {i+1}:',max_freq_pair)

在这里插入图片描述
在字节对编码的10次迭代之后,我们可以看到列表symbols现在又包含10个从其他符号迭代合并而来的符号。

print(symbols)
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '_', '[UNK]', 'ta', 'tal', 'tall', 'fa', 'fas', 'fast', 'er', 'er_', 'tall_', 'fast_']

对于在词典raw_token_freqs的键中指定的同一数据集,作为字节对编码算法的结果,数据集中的每个词现在被子词“fast_”“fast”“er_”“tall_”和“tall”分割。例如,单词“faster_”和“taller_”分别被分割为“fast er_”和“tall er_”。

print(list(token_freqs.keys()))

在这里插入图片描述
请注意,字节对编码的结果取决于正在使用的数据集。我们还可以使用从一个数据集学习的子词来切分另一个数据集的单词。作为一种贪心方法,下面的segment_BPE函数尝试将单词从输入参数symbols分成可能最长的子词。

def segment_BPE(tokens, symbols):outputs = []for token in tokens:start, end = 0, len(token)cur_output = []# 具有符号中可能最长子字的词元段while start < len(token) and start < end:if token[start: end] in symbols:cur_output.append(token[start: end])start = endend = len(token)else:end -= 1if start < len(token):cur_output.append('[UNK]')outputs.append(' '.join(cur_output))return outputs
  1. 函数接受两个参数:tokenssymbols

    • tokens 是待分割的标记列表。
    • symbols 是用于分割标记的符号列表。
  2. 函数创建一个空列表 outputs 用于存储分割后的结果。

  3. 对于每个标记 token,进行以下操作:

  4. 初始化两个变量 startend 为 0 和标记的长度。

  5. 创建一个空列表 cur_output 用于存储当前标记的分割结果。

  6. 在一个循环中,尝试从标记的起始位置开始找到最长的子字,使其在符号列表 symbols 中存在。

  7. 如果从 startend 的子字在 symbols 中存在,则将该子字添加到 cur_output 中,并更新 startend,将 end 重置为标记的长度。

  8. 如果子字不在 symbols 中,则将 end 减小 1,继续尝试找到更短的子字。

  9. 如果 start 小于标记的长度,说明有未被分割的部分,将其视为未知符号 [UNK],并将其添加到 cur_output 中。

  10. cur_output 使用空格连接为一个字符串,并将其添加到 outputs 列表中。

  11. 循环结束后,返回 outputs 列表,其中包含了对每个标记进行分割后的结果。

我们使用列表symbols中的子词(从前面提到的数据集学习)来表示另一个数据集的tokens。

tokens = ['tallest_', 'fatter_']
print(segment_BPE(tokens, symbols))

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/95204.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

WebRTC 安全之一

WebRTC 的安全需要满足三个基本需求 Authentication 用户访问需要认证Authorization 用户访问需要授权Audit 用户的访问应该可被追踪和审查 其中前两项也可以归结为 CIA Confidentiality 机密性&#xff1a;信息需要保密&#xff0c; 访问权限也需要控制Integrity 完整性&#…

解决:在宝塔站点上添加域名(8080,888等端口)显示“端口范围不合法“

在宝塔上给站点添加域名访问时&#xff0c;有时候需要部署站点的端口为8080或者888端口。但是添加之后显示&#xff1a; 解决方法 点击宝塔上的文件 切换到根目录搜索 public.py 包含子目录 选择这个&#xff1a; 修改其中的checkport函数&#xff1a; 最后&#xff0c;重启面…

数据库备份

数据库备份&#xff0c;数据库为school&#xff0c;素材如下 1.创建student和score表 目录 数据库备份&#xff0c;数据库为school&#xff0c;素材如下 1.创建student和score表 2.为student表和score表增加记录 3.备份数据库school到/backup目录 4.备份MySQL数据库为带…

html5——前端笔记

html 一、html51.1、理解html结构1.2、h1 - h6 (标题标签)1.3、p (段落和换行标签)1.4、br 换行标签1.5、文本格式化1.6、div 和 span 标签1.7、img 图像标签1.8、a 超链接标签1.9、table表格标签1.9.1、表格标签1.9.2、表格结构标签1.9.3、合并单元格 1.10、列表1.10.1、ul无序…

IDEA无效发行版本17

IDEA无效发行版本17 idea开发工具依赖的 jdk版本 和 项目依赖的jdk版本一定要保持 一致&#xff0c;不然会报错。 setting-->build-->compiler-》javaCompiler project->structure 这个也要保持一样。 在porm.xml文件中&#xff0c;你配置jdk版本是1.8&#xff0c;这…

02-请解释一下Java的内存模型和happens-before规则?【Java面试题总结】

请解释一下Java的内存模型和happens-before规则&#xff1f; 概念&#xff1a;Java内存模型&#xff0c;简称JMM&#xff0c;是一种定义了多线程程序中内存访问行为的规范。它定义了线程如何与主内存和工作内存进行交互&#xff0c;以及如何保证多线程程序的正确性和可见性。J…

Windows配置SonarQube代码审查工具详细步骤(附带IDEA SonarLint插件使用)

文章目录 环境说明以及准备一. SonarQube的下载与安装二. 添加SonarQube项目三. 使用Maven命令上传代码到SonarQube四. IDEA安装SonarLint插件 环境说明以及准备 本篇博客使用的SonarQube版本为9.8&#xff0c;注意JDK 1.8已经不能支持 NameVersionDownLoad LinkSonarQube9.8…

一款windows的终端神奇,类似mac的iTem2

终于找到了一款windows的终端神奇。类似mac的iTem2 来&#xff0c;上神器 cmder cmder是一款windows的命令行工具&#xff0c;就是我们的linux的终端&#xff0c;用起来和linux的命令一样。所以我们今天要做的是安装并配置cmder ![在这里插入图片描述](https://img-blog.csdni…

three.js(二):webpack + three.js + ts

用webpackts 开发 three.js 项目 webpack 依旧是主流的模块打包工具;ts和three.js 是绝配&#xff0c;three.js本身就是用ts写的&#xff0c;ts可以为three 项目提前做好规则约束&#xff0c;使项目的开发更加顺畅。 1.创建一个目录&#xff0c;初始化 npm mkdir demo cd de…

11.Redis的慢操作之rehash

Redis为什么快 它接收到一个键值对操作后&#xff0c;能以微秒级别的速度找到数据&#xff0c;并快速完成操作。 数据库这么多&#xff0c;为啥 Redis 能有这么突出的表现呢&#xff1f; 内存数据结构 一方面&#xff0c;这是因为它是内存数据库&#xff0c;所有操作都在内存上…

python爬虫12:实战4

python爬虫12&#xff1a;实战4 前言 ​ python实现网络爬虫非常简单&#xff0c;只需要掌握一定的基础知识和一定的库使用技巧即可。本系列目标旨在梳理相关知识点&#xff0c;方便以后复习。 申明 ​ 本系列所涉及的代码仅用于个人研究与讨论&#xff0c;并不会对网站产生不好…

K8s:一文认知 CRI,OCI,容器运行时,Pod 之间的关系

写在前面 博文内容整体结构为结合 华为云云原生课程 整理而来,部分内容做了补充课程是免费的&#xff0c;有华为云账户就可以看&#xff0c;适合理论认知&#xff0c;感觉很不错。有需要的小伙伴可以看看&#xff0c;链接在文末理解不足小伙伴帮忙指正 对每个人而言&#xff0c…