CNN 01(CNN简介)

一、卷积神经网络的发展

convolutional neural network 

计算机视觉领域,通常要做的就是指用机器程序替代人眼对目标图像进行识别等。那么神经网络也好还是卷积神经网络其实都是上个世纪就有的算法,只是近些年来电脑的计算能力已非当年的那种计算水平,同时现在的训练数据很多,于是神经网络的相关算法又重新流行起来,因此卷积神经网络也一样流行。

  • 1974年,Paul Werbos提出了误差反向传导来训练人工神经网络,使得训练多层神经网络成为可能。
  • 1979年,Kunihiko Fukushima(福岛邦彦),提出了Neocognitron, 卷积、池化的概念基本形成。
  • 1986年,Geoffrey Hinton与人合著了一篇论文:Learning representations by back-propagation errors。
  • 1989年,Yann LeCun提出了一种用反向传导进行更新的卷积神经网络,称为LeNet。
  • 1998年,Yann LeCun改进了原来的卷积网络,LeNet-5。

深度学习三大领域:   计算机视觉CV    自然语言处理NLP  语音识别 VR

二、为什么需要卷积神经网络

2.1 图像特征数量对神经网络效果压力

假设下图是一图片大小为28 * 28 的黑白图片时候,每一个像素点只有一个值(单通道)。那么总的数值个数为 784个特征。

 那现在这张图片是彩色的,那么彩色图片由RGB三通道组成,也就意味着总的数值有28* 28 *3 = 2352个值。 

img

 从上面我们得到一张图片的输入是2352个特征值,即神经网路当中与若干个神经元连接,假设第一个隐层是10个神经元,那么也就是23520个权重参数。

如果图片再大一些呢,假设图片为1000 *1000* 3,那么总共有3百万数值,同样接入10个神经元,那么就是3千万个权重参数。这样的参数大小,神经网络参数更新需要大量的计算不说,也很难达到更好的效果,大家就不倾向于使用多层神经网络了。

所以就有了卷积神经网络的流行,那么卷积神经网络为什么大家会选择它。那么先来介绍感受野以及边缘检测的概念。

2.2 感受野

1962年Hubel和Wiesel通过对猫视觉皮层细胞的研究,提出了感受野(receptive field)的概念,Fukushima基于感受野概念提出的神经认知机(neocognitron)可以看作是卷积神经网络的第一个实现网络。

单个感受器与许多感觉神经纤维相联系,感觉信息是通过许多感受神经纤维发放总和性的空间与时间类型不同的冲动,相当于经过编码来传递。

img

2.3 边缘检测

为了能够用更少的参数,检测出更多的信息,基于上面的感受野思想。通常神经网络需要检测出物体最明显的垂直和水平边缘来区分物体。比如

img

看一个列子,一个 6×6的图像卷积与一个3×3的过滤器(Filter or kenel)进行卷积运算(符号为 *),* 也可能是矩阵乘法所以通常特别指定是卷积的时候代表卷积意思。

  • 相当于将 Filter 放在Image 上,从左到右、从上到下地(默认一个像素)移动过整个Image,分别计算 ImageImage 被 Filter 盖住的部分与 Filter的逐元素乘积的和

img

在这个6×6 的图像中,左边一半像素的值全是 10,右边一半像素的值全是 0,中间是一条非常明显的垂直边缘。这个图像与过滤器卷积的结果中,中间两列的值都是 30,两边两列的值都是 0,即检测到了原 6×66×6 图像中的垂直边缘

注:虽然看上去非常粗,是因为我们的图像太小,只有5个像素长、宽,所以最终得到结果看到的是两个像素位置,如果在一个500 x 500的图当中,就是一个竖直的边缘了。

img

随着深度学习的发展,我们需要检测更复杂的图像中的边缘,与其使用由人手工设计的过滤器还可以将过滤器中的数值作为参数,通过反向传播来学习得到。算法可以根据实际数据来选择合适的检测目标,无论是检测水平边缘、垂直边缘还是其他角度的边缘,并习得图像的低层特征。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/95845.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaScript -【第二周】

文章来源于网上收集和自己原创,若侵害到您的权利,请您及时联系并删除~~~ 理解什么是流程控制,知道条件控制的种类并掌握其对应的语法规则,具备利用循环编写简易ATM取款机程序能力 运算符语句综合案例 1. 运算符 算术运算符赋值运…

时间语义与窗口

时间语义 在Flink中,时间语义分为两种 : 处理时间和事件时间。时间语义与窗口函数是密不可分的。以窗口为单位进行某一段时间内指标统计,例如想要统计8点-9点的某个页面的访问量,此时就需要用到了窗口函数,这里的关键…

githubPage部署Vue项目

github中新建项目 my-web (编写vue项目代码) myWebOnline(存放Vue打包后的dist包里面的文件) 发布流程 (假设my-web项目已经编写完成)Vue-cli my-web vue.config.js文件中 const { defineConfig } require(vue/cli-service)…

【LeetCode】3. 无重复字符的最长子串

3. 无重复字符的最长子串(中等) 方法:滑动窗口 哈希表 思路 这道题主要用到思路是:滑动窗口 什么是滑动窗口? 其实就是一个队列,比如例题中的 abcabcbb,进入这个队列(窗口)为 ab…

Python Opencv实践 - 轮廓检测

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/map.jpg") print(img.shape) plt.imshow(img[:,:,::-1])#Canny边缘检测 edges cv.Canny(img, 127, 255, 0) plt.imshow(edges, cmapplt.cm.gray)#查找轮廓 #c…

DHorse v1.3.2 发布,基于 k8s 的发布平台

版本说明 新增特性 构建版本、部署应用时的线程池可配置化; 优化特性 构建版本跳过单元测试; 解决问题 解决Vue应用详情页面报错的问题;解决Linux环境下脚本运行失败的问题;解决下载Maven安装文件失败的问题; 升…

大学物理 之 安培环路定理

文章目录 前言什么是安培环路定理安培环路定理有什么作用 深入了解深入学习 前言 什么是安培环路定理 安培环路定理的物理意义在于描述了电流和磁场之间的相互作用,以及如何在一个封闭的回路中分析这种相互作用。 简单的来说 , 用环路定理来解决在磁场中B对任意封…

【操作系统】一文快速入门,很适合JAVA后端看

作者简介: 目录 1.概述 2.CPU管理 3.内存管理 4.IO管理 1.概述 操作系统可以看作一个计算机的管理系统,对计算机的硬件资源提供了一套完整的管理解决方案。计算机的硬件组成有五大模块:运算器、控制器、存储器、输入设备、输出设备。操作…

2022年下半年系统架构设计师真题(下午带答案)

试题一 (25分) 某电子商务公司拟升级其会员与促销管理系统,向用户提供个性化服务,提高用户的粘性。在项目立项之初,公司领导层一致认为本次升级的主要目标是提升会员管理方式的灵活性,由于当前用户规模不大,业务也相对…

前端基础4——jQuery

文章目录 一、基本了解1.1 导入jQuery库1.2 基本语法1.3 选择器 二、操作HTML2.1 隐藏和显示元素2.2 获取与设置内容2.3 获取、设置和删除属性2.4 添加元素2.5 删除元素2.6 设置CSS样式 三、jQuery Ajax3.1 基本语法3.2 回调函数3.3 常用HTTP方法3.4 案例一3.4.1 准备工作3.4.2…

Vue2023 面试归纳及复习

目录 1. Vue 3中的Composition API(Hooks)是什么?它与Options API有何不同? Composition API 的优势 2 Options API 语法格式 3 setup 语法糖 4 Vue3的生命周期 5. 请解释一下Vue 3中的Teleport(传送&#xf…

设计模式-迭代器

文章目录 1. 引言1.1 概述1.2 设计模式1.3 迭代器模式的应用场景1.4 迭代器模式的作用 2. 基本概念2.1 迭代器 Iterator2.2 聚合 Aggregate2.3 具体聚合 ConcreteAggregate 3. Java 实现迭代器模式3.1 Java 集合框架3.2 Java 迭代器接口3.3 Java 迭代器模式实现示例 4. 迭代器模…