Flink+Paimon多流拼接性能优化实战

目录

(零)本文简介

意外收获:

(一)背景

(二)探索梳理过程

(三)源码改造

(四)修改效果

1、JOB状态

2、Level5的dataFile总大小

3、数据延迟

4、关联率

(五)未来展望:异步Compact


(零)本文简介

Paimon多流拼接/合并性能优化;

        为解决离线T+1多流拼接数据时效性Flink实时状态太大任务稳定性问题,这里基于数据湖工具Apache Paimon进行近实时的多流拼接。

        使用Flink+Paimon基于ParmaryKey TablePartialUpdate)进行多流拼接的时候,跑一段时间有时会遇到周期性背压、checkpoint时间过长等情况,本文通过剖析源码逻辑、修改源码,在一定程度上解决了这个问题。

        note:下文对源码的修改可能需要了解一点paimon的实现原理比如:LSM Tree(level DB)

可参考:LSM树详解 - 知乎

        LSM(Log-Structured Merge Tree)_lsm tree_一介草民kk的博客-CSDN博客

Apache Paimon基础 、多流拼接方法 及 与Hudi 的对比 可参考前面文章:

新一代数据湖存储技术Apache Paimon入门Demo_Leonardo_KY的博客-CSDN博客

基于数据湖的多流拼接方案-HUDI概念篇_Leonardo_KY的博客-CSDN博客

意外收获:

        本文通过修改源码还意外解决了【跨分区关联率偏低】的问题(详见下文)。

(一)背景

       这里使用 Flink 1.14 + Apache Paimon 0.5 snapshot 进行多流拼接(前端埋点流 + 服务端埋点流);

        当前情况是一天一个分区,一个分区100个bucket;就会出现如下情况:分区/bucket中的数据越来越多,到达下午或者傍晚的时候就会出现 paimon 作业周期性背压(因为mergeTree中维护的数据越来越多,tree越来越大),checkpoint时间也会比较长;于是决定将mergeTree中的过期数据删除,即让其不进入tree中,减少计算量;

        这里的“过期”按需自定义,比如调研发现99.9%的数据都可以使用3个小时之内的数据拼接上,那就根据时间戳与当前时间戳(假设没有很严重的消费积压)相比,时间差超过3小时的数据就将其丢弃;

具体细节涉及到(这里先将结论给出):

    1. data文件创建后是否还会修改?(不会)
    2. 根据时间排序的data数据文件是增量还是全量?(几个最新文件加起来就是全量)
    3. 应该根据dataFile的创建/修改时间判断过期 还是 通过具体每个record字段值的时间戳判断过期?(通过record)

(二)探索梳理过程

1、首先观察hdfs文件之后发现,dataFile只保留最近一个小时的文件,超过一小时的文件就会被删除,这里应该对应参数 partition.expiration-check-interval = 1h,由此可知data文件不是增量的【下文compact只有几个文件再次加强验证】(那么就不能通过dataFile的最新修改时间判断文件过期将数据过滤);

2、观察flink log发现,每次compaction都只读几个文件,如下所示:

        每次其实只读取一个level0的file,再加上几个level5的file(level5这里file就是之前的全部数据,包含多个流的),最后将compact之后的文件再命名为新的名字写到level5;

        随着分区数据量的增多,参与compact的file也会越来越多(这也是会导致tree偏大,出现周期性背压的原因);

另外,dataFile命名呈现如下规律:

        level5的第二个文件总是跟第一个中间隔一个(这个跟改源码没有关系,只是适合观察规律);

到晚间的时候参与compact的file更多了:

3、观察每次level5生成的dataFile(理论上level5的dataFile会越来越大/多,当单个文件大小超过128M *(1+rate)时,会生成新文件);

        所有level5的文件大小加起来会越来越大,即永远是呈增长趋势;

        如下每一层的总大小在不断增大,同时当文件到一定程度之后,每层2个文件变成3个文件;

4、【以上3点均为原始实现思路,从这里开始改造】思考:既然已知每个bucket中只要最新的几个dataFile就包含了全部的data数据(dataFile不是增量的),那么就不能通过文件最新修改时间来判断数据是否过期,只能从最新的几个dataFile的每条记录来进行判断了,即原本每次参与合并的record是从这个partition+bucket建立开始的全部数据,那么是否可以通过修改源码判断每条record是否过期,从而不参与mergeTree,在compact完成之后也不会再次写入新的dataFile(如果还是写进来,每次读进tree时都需要判断是否过期,是否进入tree)?【答案当然是可以的!】

(三)源码改造

1、首先说明一下,在源码中有这么一段

// IntervalPartition.partition()
public List<List<SortedRun>> partition() {List<List<SortedRun>> result = new ArrayList<>();List<DataFileMeta> section = new ArrayList<>();BinaryRow bound = null;for (DataFileMeta meta : files) {if (!section.isEmpty() && keyComparator.compare(meta.minKey(), bound) > 0) {// larger than current right bound, conclude current section and create a new oneresult.add(partition(section));section.clear();bound = null;}section.add(meta);if (bound == null || keyComparator.compare(meta.maxKey(), bound) > 0) {// update right boundbound = meta.maxKey();}}if (!section.isEmpty()) {// conclude last sectionresult.add(partition(section));}return result;
}

        此处为了将文件排序、再将有overlap的放在一个list里边,一但产生gap(即没有overlap),那么就创建新的list,最终将这些 list 再放到List>中:

示意图如下:

2、后续通过一些处理变成 List> 的格式,这里的KeyValue就包含我们想要去操纵的record!

源码是这样的:

public <T> RecordReader<T> mergeSort(List<ReaderSupplier<KeyValue>> lazyReaders,Comparator<InternalRow> keyComparator,MergeFunctionWrapper<T> mergeFunction)throws IOException {if (ioManager != null && lazyReaders.size() > spillThreshold) {return spillMergeSort(lazyReaders, keyComparator, mergeFunction);}List<RecordReader<KeyValue>> readers = new ArrayList<>(lazyReaders.size());for (ReaderSupplier<KeyValue> supplier : lazyReaders) {try {readers.add(supplier.get());} catch (IOException e) {// if one of the readers creating failed, we need to close them all.readers.forEach(IOUtils::closeQuietly);throw e;}}return SortMergeReader.createSortMergeReader(readers, keyComparator, mergeFunction, sortEngine);
}

        这里的return就会创建sortMergeReader了,我们可以在将数据传入这里之前,先进行过滤(通过判断每一条record是否超过过期时间),修改如下:

public <T> RecordReader<T> mergeSort(List<ReaderSupplier<KeyValue>> lazyReaders,Comparator<InternalRow> keyComparator,MergeFunctionWrapper<T> mergeFunction)throws IOException {if (ioManager != null && lazyReaders.size() > spillThreshold) {return spillMergeSort(lazyReaders, keyComparator, mergeFunction);}List<RecordReader<KeyValue>> readers = new ArrayList<>(lazyReaders.size());for (ReaderSupplier<KeyValue> supplier : lazyReaders) {try {// 过滤掉过期数据RecordReader<KeyValue> filterSupplier =supplier.get().filter((KeyValue keyValue) ->isNotExpiredRecord(keyValue.value(), expireTimeMillis));readers.add(filterSupplier);} catch (IOException e) {// if one of the readers creating failed, we need to close them all.readers.forEach(IOUtils::closeQuietly);throw e;}}return SortMergeReader.createSortMergeReader(readers,keyComparator,mergeFunction,sortEngine,keyType.getFieldTypes(),valueType.getFieldTypes());
}// 判断这条数据是否过期
public boolean isNotExpiredRecord(InternalRow row, long expireTimeMillis) {if (expireTimeMillis <= 0) {return true;}// 只要有一个字段不为空,且大于0,且过期时间大于expireTimeMillis,就判断为过期for (Integer pos : expireFieldsPosSet) {if ((!row.isNullAt(pos))&& row.getLong(pos) > 0&& (System.currentTimeMillis() - row.getLong(pos)) > expireTimeMillis) {return false;}}return true;
}

与此同时,将相关参数暴露出来,可以在建表时进行自定义配置:

public static final ConfigOption<Integer> RECORDS_EXPIRED_HOUR =key("record.expired-hour").intType().defaultValue(-1).withDescription("Records in streams WON'T be offered into MergeTree when they are expired."+ " (Inorder to avoid too large MergeTree; -1 means never expired). ");public static final ConfigOption<String> RECORDS_EXPIRED_FIELDS =key("record.expired-fields").stringType().noDefaultValue().withDescription("Records in streams WON'T be offered into MergeTree when they are judged as [expired] according to these fields."+ "If you specify multiple fields, delimiter is ','.");

使用方法:

val createPaimonJoinTable = (s"CREATE TABLE IF NOT EXISTS ${paimonTable}(\n"+ " uuid STRING,\n"+ " metaid STRING,\n"+ " cid STRING,\n"+ " area STRING,\n"+ " ts1 bigint,\n"+ " ts2 bigint,\n"+ " d STRING, \n"+ " PRIMARY KEY (d, uuid) NOT ENFORCED \n"+ ") PARTITIONED BY (d) \n"+ " WITH (\n" +"    'merge-engine' = 'partial-update',\n" +"    'changelog-producer' = 'full-compaction', \n" +"    'file.format' = 'orc', \n" +s"    'sink.managed.writer-buffer-memory' = '${sinkWriterBuffer}', \n" +s"    'full-compaction.delta-commits' = '${fullCompactionCommits}', \n" +s"    'scan.mode' = '${scanMode}', \n" +s"    'bucket' = '${bucketNum}', \n" +s"    'sink.parallelism' = '${sinkTaskNum}', \n" +s"    'record.expired-hour' = '3' , \n" +   // user defined para"     'record.expired-fileds' = '4,5' , \n" +   // user defined para"     'sequence.field' = 'ts1' \n" +")")
tableEnv.executeSql(createPaimonJoinTable)

(四)修改效果

1、JOB状态

运行到晚上20点尚未出现背压:

checkpoint时间也没有过长(如果不剔除过期数据,到这个时间cp时长应该在3分钟左右):

生产到Kafka的消息也没有严重的断流或者锯齿现象:

还是有可能出现exception如下(但对数据量没有任何影响):

2、Level5的dataFile总大小

        上边只是现象,最终还是要数据说话。

        修改源码之后,观察dataFile,理论上每一层的size总大小可能会出现减小的情况 (因为过期数据就不会再写入到 level5 新的data文件中了)

        如下图:levelSize diff(下一次level总size - 上一次level总size),确实出现了“有正有负”的情况,于是验证源码修改生效(即每次进行compact只会读取近 n 个小时的数据进行合并)!

3、数据延迟

有意思的是,当我们修改源码(将过期的数据丢弃)之后,数据延迟也变小了。

数据延迟计算方法:paimon处理完将数据写到kafka队列的时间戳 - 前端埋点被触发被服务器接收到的时间戳;

修改前:

修改后:

4、关联率

        意外收获:

        经过上述过程改造源码,还可以解决“跨分区关联率偏低”的问题!!!

        既然是多个流相关联,那么就必然存在一个关联率的问题(一定会有部分数据因为埋点上报缺失/延迟导致关联不上)。于是就会存在如下问题:如果数据按“天”进行分区,那么在跨分区时刻也就必然会存在更多的数据关联不上(因为两个流的时间不是完全同步的,一条流可能落到前一天分区,另一条流可能落在第二天分区;数据不在同一个分区,就不会进入同一个mergeTree,也就关联不上)。

那么修改了源码之后是如何解决上述问题的呢?

        如前文所述,我们修改源码的目的是“使参与compact的数据不会持续增加”,于是修改代码使部分数据过期,最终level5(LSM tree的最深一层)的数据总量不持续增加。那么,既然数据不会持续增加,我们就可以将所有的数据全部放在一个分区中(或者理解为不设分区,一直在一个hdfs路径下;此时只有一开始跑的时候前一少部分数据关联率偏低,后边会维持在一个稳定水平),也就没有过跨分区一说了。

(五)未来展望:异步Compact

官方提供的paimon源码,里边的compaction是 sync 模式的,我尝试改成过 async 的,但是时不时会出现很少量的数据丢失(感觉可能是因为同一时刻有多个compact任务在进行),后续有机会可以再继续尝试一下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/97341.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

企业网络安全:威胁情报解决方案

什么是威胁情报 威胁情报是网络安全的关键组成部分&#xff0c;可为潜在的恶意来源提供有价值的见解&#xff0c;这些知识可帮助组织主动识别和防止网络攻击&#xff0c;通过利用 STIX/TAXII 等威胁源&#xff0c;组织可以检测其网络中的潜在攻击&#xff0c;从而促进快速检测…

OJ练习第160题——LRU 缓存

LRU 缓存 力扣链接&#xff1a;146. LRU 缓存 题目描述 请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。 实现 LRUCache 类&#xff1a; LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存 int get(int key) 如果关键字 key 存在于缓…

用迅为RK3568开发板使用OpenCV处理图像颜色通道提取ROI

本小节代码在配套资料“iTOP-3568 开发板\03_【iTOP-RK3568 开发板】指南教程 \04_OpenCV 开发配套资料\07”目录下&#xff0c;如下图所示&#xff1a; 在计算机的色彩图像中存有三个通道&#xff0c;即 BGR 通道&#xff0c;根据三个颜色通道的亮度值来显示出不同的颜色&…

ubuntu22.04搭建verilator仿真环境

概述 操作系统为 Ubuntu(22.04.2 LTS)&#xff0c;本次安装verilator开源verilog仿真工具&#xff0c;进行RTL功能仿真。下面构建版本为5.008的verilator仿真环境。先看一下我系统的版本&#xff1a; 安装流程 安装依赖 sudo apt-get install git perl python3 make autoc…

Echarts遇到Vue3时遇到的问题

将vue2的Echarts代码迁移到了vue3项目上&#xff0c;引发的问题 问题描述&#xff1a; 1. 点击图例legend时刻度轴偏移&#xff0c;图像不展示&#xff0c;以及报错 初始chart正常.图 点击图例后的chart和报错.图 2. 调用resize()不生效且报错 初始正常.图 修改屏幕尺寸调用r…

ReentrantLock 原理

可以看到ReentrantLock提供了两个同步器&#xff0c;实现公平锁和非公平锁&#xff0c;都继承自AQS。 默认是非公平锁&#xff01; 下面是对ReentrantLock 的源码解析&#xff1a; 加锁源码 // Sync 继承自 AQS static final class NonfairSync extends Sync {private stati…

[C++网络协议] I/O复用

具有代表性的并发服务器端实现模型和方法&#xff1a; 多进程服务器&#xff1a;通过创建多个进程提供服务。 多路复用服务器&#xff1a;通过捆绑并统一管理I/O对象提供服务。✔ 多线程服务器&#xff1a;通过生成与客户端等量的线程提供服务。 目录 1. I/O复用 2. select函…

构建简单的Node.js HTTP服务器,发布公网远程访问的快速方法

文章目录 前言1.安装Node.js环境2.创建node.js服务3. 访问node.js 服务4.内网穿透4.1 安装配置cpolar内网穿透4.2 创建隧道映射本地端口 5.固定公网地址 前言 Node.js 是能够在服务器端运行 JavaScript 的开放源代码、跨平台运行环境。Node.js 由 OpenJS Foundation&#xff0…

测试靶场bWAPP安装部署

bWAPP&#xff08;Buggy Web Application&#xff09;是一个用于学习和练习网络应用安全的漏洞测试平台。它是一个开源的虚拟机或Docker映像&#xff0c;旨在为安全研究人员、开发人员和学生提供一个实践和演示各种Web应用漏洞的环境。 bWAPP包含了许多已知的Web应用程序漏洞&…

C#面试十问

1&#xff1a;C#中变量类型分为哪两种&#xff1f;它们的区别是什么&#xff1f;2&#xff1a;Class和Struct的区别&#xff1f;3&#xff1a;C#中类的修饰符和类成员的修饰符有哪些&#xff1f;4&#xff1a;面向对象的三个特征&#xff08;特点&#xff09;是什么&#xff1f…

【算法系列篇】分冶-快排

文章目录 前言什么是分冶1.颜色分类1.1 题目要求1.2 做题思路1.3 Java代码实现 2. 排序数组2.1 题目要求2.2 做题思路2.3 Java代码实现 3.数组中的第k个最大元素3.1 题目要求3.2 做题思路3.3 Java代码实现 4. 最小的k个数4.1 题目要求4.2 做题思路4.3 Java代码实现 总结 前言 …

vr智慧党建主题展厅赋予企业数字化内涵

现如今&#xff0c;VR全景技术的发展让我们动动手指就能在线上参观博物馆、纪念馆&#xff0c;不仅不用受时间和空间的限制&#xff0c;还能拥有身临其境般的体验&#xff0c;使得我们足不出户就能随时随地学习、传承红色文化。 很多党建展厅都是比较传统的&#xff0c;没有运用…