数据结构——七大排序[源码+动图+性能测试]

本章代码gitee仓库:排序

文章目录

  • 🎃0. 思维导图
  • 🧨1. 插入排序
    • ✨1.1 直接插入排序
    • ✨1.2 希尔排序
  • 🎊2. 选择排序
    • 🎋2.1 直接选择排序
    • 🎋2.2 堆排序
  • 🎏3. 交换排序
    • 🎐3.1 冒泡排序
    • 🎐3.2 快速排序
      • 🎑hoare版本
      • 🎑挖坑法
      • 🎑前后指针
      • 🎑小区间优化
      • 🎑非递归
  • 🎀4. 归并排序
    • 🎁4.1 递归
    • 🎁4.2 非递归
  • 🎫5. 性能测试
    • 🎖5.1 1w数据
    • 🎖5.2 10w数据
    • 🎖5.3 100w数据
    • 🎖5.4 1000w数据
    • 🎖5.5 1亿数据

🎃0. 思维导图

image-20230903205328348

🧨1. 插入排序

insert_s

✨1.1 直接插入排序

我们日常打扑克牌,摸牌,让后将牌按顺序插入好,这其实就是插入排序的过程,打小插入排序的思想就植入我们的脑海

第一张牌不用管,直接拿在手里,之后的牌按照大小再一个一个插入即可

//直接插入排序
void InsertSort(int* a, int n)
{//第一张牌不用排,所以直接从下标1开始走for (int i = 1; i < n; i++){int end = i - 1;int tmp = a[i];while (end >= 0){if (a[end] > tmp){//往后挪数据a[end + 1] = a[end];end--;}elsebreak;}//直接break出来 或者 end = -1a[end + 1] = tmp;}
}

直接插入排序特性:

  1. 越接近有序,效率越高(不用那么多次挪动数据)

  2. 时间复杂度:O(N2)

    逆序最坏O(N2),有序最好O(N)

  3. 空间复杂度:O(1)

  4. 稳定性:稳定

✨1.2 希尔排序

希尔排序是基于直接插入排序的一种优化,将数据分为gap组,对每组进行排序,然后再缩小间隔,知道gap为1的时候,该序列为有序

image-20230902160102530

//希尔排序
void ShellSort(int* a, int n)
{int gap = n;while (gap > 1){//最后一次gap一定要是1gap = gap / 3 + 1;//分组插入排序 预排序for (int i = 0; i < n - gap; i++){int end = i;int tmp = a[i + gap];while (end >= 0){if (a[end] > tmp){a[end + gap] = a[end];end -= gap;}elsebreak;}a[end + gap] = tmp;}}
}

希尔排序特性:

  1. 希尔排序有2层循环,一个是gap的逐渐缩小,一个是分为gap组之后的插入排序,我们一般以为时间复杂度为**O(N*logN)**这个量级。image-20230902162331699但其实这其中的N,一直是在变化的,可理解为先上升,后下降

    image-20230902162738748

    所以这个量级是略大于N*logN,查阅资料可得知,希尔排序的时间复杂度大概为O(N1.3~2)image-20230902163132607

  2. 稳定性:不稳定

🎊2. 选择排序

还是以打扑克来举例,有时候我们感觉一张一张摸牌十分费时间,所以就指定一个人来发牌,发完之后我们将这一把牌拿到手中再开始理牌

select_s

🎋2.1 直接选择排序

这个选择排序每次都是趟都是选出最小的数,我们可以在此基础上做出优化,每次选出2个数,即最小值和最大值

//选择排序
void SelectSort(int* a, int n)
{int left = 0;int right = n - 1;while (left < right){int mini = left;int maxi = left;for (int i = left + 1; i <= right; i++){if (a[i] < a[mini]){mini = i;}if (a[i] > a[maxi]){maxi = i;}}Swap(&a[left], &a[mini]);//数据修正if (a[left] == a[maxi]){maxi = mini;}Swap(&a[right], &a[maxi]);left++;right--;}
}

直接选择排序特性:

  1. 不考虑序列的有序性,每次都找出最小最大值,效率较低

  2. 时间复杂度:O(N2)

    最好情况:O(N2)

    最坏情况:O(N2)

  3. 空间复杂度:O(1)

  4. 稳定性:不稳定

🎋2.2 堆排序

堆排序也是选择排序的一种,只不过没有直接选择排序那么朴实,堆排序有一些“华丽”的技巧。

堆排序在之前二叉树的章节讲过了,这里就不再过多赘述,有兴趣的可以查看此篇文章:数据结构——二叉树

//向下调整 前提:子树都是堆
void AdjustDown(int* val, int sz, int parent)
{//默认左孩子大int child = parent * 2 + 1;//至多叶子结点结束while (child < sz){//不越界 选出更大的孩子if (child + 1 < sz && val[child] < val[child + 1]){child++;}if (val[child] > val[parent]){Swap(&val[child], &val[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}//堆排序
void HeapSort(int* a, int n)
{//向下调整 O(N)for (int i = (n - 1 - 1) / 2; i >= 0; --i){AdjustDown(a,n, i);}//向下调整排序 O(N*logN)for (int i = 0; i < n; i++){Swap(&a[0], &a[n - 1 - i]);AdjustDown(a, n - 1 - i, 0);}
}

堆排序特性:

  1. 堆排序进行选数据效率较高
  2. 时间复杂度:O(N*logN)
  3. 空间复杂度:O(1)
  4. 稳定性:不稳定

🎏3. 交换排序

🎐3.1 冒泡排序

冒泡排序应该是多数人的启蒙排序算法,思路较为简单

bubble_s

//冒泡排序
void BubbleSort(int* a, int n)
{for (int i = 0; i < n; i++){for (int j = 0; j < n - i - 1; j++){if (a[j] > a[j + 1]){Swap(&a[j], &a[j + 1]);}}}
}

冒泡排序特性:

  1. 时间复杂度:O(N2)

    最坏情况:O(N2)

    最好情况:O(N)

  2. 空间复杂度:O(1)

  3. 稳定性:稳定

这里的最好情况,就是里面没有发送交换了,就证明此时序列已经有序,则不需要往后再遍历,优化如下:

//冒泡排序
void BubbleSort(int* a, int n)
{for (int i = 0; i < n; i++){bool falg = true;for (int j = 0; j < n - i - 1; j++){if (a[j] > a[j + 1]){Swap(&a[j], &a[j + 1]);falg = false;}}if (falg)break;}
}

🎐3.2 快速排序

快速排序,顾名思义,速度很快,效率很高,排序算法里面的大哥大

快排的思想是选出一个基准值key,然后把这个值放入正确的位置(最终排好序要去的位置)

例如6,2,9,1,5,7,4这组数据

我们选出6为key值,然后将比6小的放左边,比6大的放右边

这一趟下来,6就在正确的位置上了

quick_s

🎑hoare版本

img

//快速排序
void QuickSort(int* a, int left,int right)
{if (left >= right)return;//记录起始int begin = left;int end = right;//选取最左边为key值int keyi = left;while (left < right){//选左 右先走 找小值while (left<right && a[right] >= a[keyi]){right--;}while (left < right && a[left] <= a[keyi]){left++;}//交换两边的值Swap(&a[left], &a[right]);}Swap(& a[keyi], & a[left]);keyi = left;//左右区间递归QuickSort(a, begin, keyi - 1);QuickSort(a, keyi+1, end);
}

hoare版本为快排的最初始版本,这个版本不容易控制:

  1. 找大值/小值的时候,如果该值等于key值,也需要挪动,即a[right] >= a[keyi]a[left] <= a[keyi]

    image-20230903090330597

    另外,判断条件还应加上left<right,防止越界

    image-20230903090949353

  2. 左边作为key,右边先走,这样就能保证相对位置比key要小或者就是key的位置

    右边作为key,左边先走,相遇位置比key大或者就是key的位置

  3. 已排序或者逆序的情况都是最糟糕的情况

    image-20230903100850115

    有多少个数据,就有递归多少层栈帧,最终会导致栈溢出

  • 随机选key

    这个keyi影响了快排的效率,只要keyi取的数,每次越接近于中间,那么每次就越接近于二分,所以我们可以考虑随机选key,这样就不必担心序列是否接近有序

    //快速排序
    void QuickSort(int* a, int left,int right)
    {if (left >= right)return;//记录起始int begin = left;int end = right;//left可能不是0,加上leftint randi = left + (rand() % (right - left));//还是选择左边为key,交换一下Swap(&a[left], &a[randi]);//选取最左边为key值int keyi = left;while (left < right){//选左 右先走 找小值while (left<right && a[right] >= a[keyi]){right--;}//左边找大值while (left < right && a[left] <= a[keyi]){left++;}//交换两边的值Swap(&a[left], &a[right]);}Swap(& a[keyi], & a[left]);keyi = left;//[begin,keyi-1] keyi [keyi+1,end]//左右区间递归QuickSort(a, begin, keyi - 1);QuickSort(a, keyi+1, end);
    }
    
  • 三数取中

    int GetMidNumi(int* a, int left, int right)
    {int mid = (left + right) / 2;if (a[left] < a[mid]){if (a[mid] < a[right])return mid;else if (a[left] > a[right])return left;elsereturn right;}else	//a[left] >a[mid]{if (a[mid] > a[right])return mid;else if (a[left] < a[right])return left;elsereturn right;}
    }
    int Partition1(int* a, int left, int right)
    {//三数取中	开始 中间 末尾 选中间值int midi = GetMidNumi(a, left, right);if (midi != left)Swap(&a[left], &a[midi]);//选取最左边为key值int keyi = left;while (left < right){//选左 右先走 找小值while (left < right && a[right] >= a[keyi]){right--;}//左边找大值while (left < right && a[left] <= a[keyi]){left++;}Swap(&a[left], &a[right]);}Swap(&a[keyi], &a[left]);keyi = left;return keyi;
    }
    void QuickSort(int* a, int left, int right)
    {if (left > right)return;int keyi = Partition1(a, left, right);QuickSort(a, left, keyi - 1);QuickSort(a, keyi + 1, right);
    }
    

🎑挖坑法

img

基本思路不边,只是这个更好理解,挖坑填坑、挖坑填坑,最后相遇位置一定是坑位

//挖坑
int Partition2(int* a, int left, int right)
{//三数取中	开始 中间 末尾 选中间值int midi = GetMidNumi(a, left, right);if (midi != left)Swap(&a[left], &a[midi]);//选取最左边为key值int key = a[left];int hole = left;while (left < right){//选左 右先走 找小值while (left < right && a[right] >= key){right--;}//填坑a[hole] = a[right];//挖坑hole = right;//左边找大值while (left < right && a[left] <= key){left++;}a[hole] = a[left];hole = left;}a[hole] = key;return hole;
}
void QuickSort(int* a, int left, int right)
{if (left > right)return;int keyi = Partition2(a, left, right);QuickSort(a, left, keyi - 1);QuickSort(a, keyi + 1, right);
}

🎑前后指针

img

  1. cur找的值比key小,++prevcurprev位置的值交换,++cur
  2. cur找的值比key大,++cur
//前后指针
int Partition3(int* a, int left, int right)
{//三数取中	开始 中间 末尾 选中间值int midi = GetMidNumi(a, left, right);if (midi != left)Swap(&a[left], &a[midi]);int keyi = left;int prev = left;int cur = left + 1;while (cur <= right){if (a[cur] < a[keyi] && ++prev != cur){Swap(&a[prev], &a[cur]);}++cur;}Swap(&a[keyi], &a[prev]);keyi = prev;return keyi;
}
void QuickSort(int* a, int left, int right)
{if (left > right)return;int keyi = Partition3(a, left, right);QuickSort(a, left, keyi - 1);QuickSort(a, keyi + 1, right);
}

🎑小区间优化

当大量的数据递归到小量数据的时候,递归就会很麻烦,所以当数据量较小的时候,我们可以采用插入排序进行辅助,直接将这一小段数据排成有序

image-20230903141230825

#define INSERTION_SORT_THRESHOLD 10
void QuickSort(int* a, int left, int right)
{if (left > right)return;//区间自己决定 一般采用10左右if ((right - left + 1) > INSERTION_SORT_THRESHOLD){int keyi = Partition2(a, left, right);QuickSort(a, left, keyi - 1);QuickSort(a, keyi + 1, right);}elseInsertSort(a + left, right - left + 1);
}

🎑非递归

模拟递归,将区间放入栈

void QuickSortNonR(int* a, int left, int right)
{//用C++的stl库stack<int> st;st.push(right);st.push(left);while (!st.empty()){int begin = st.top();st.pop();int end = st.top();st.pop();int keyi = Partition2(a, begin, end);//[begin,keyi-1] keyi [keyi+1,end]if (keyi + 1 < end){st.push(end);st.push(keyi + 1);}if (begin < keyi - 1){st.push(keyi - 1);st.push(begin);}}
}

快排特性:

  1. 时间复杂度:O(N*logN)

    快排比较像二叉树

    image-20230903094437641

    单趟排序的时间复杂度为O(N),而递归的深度是O(logN),合计起来就是O(N*logN)这个量级

  2. 空间复杂度:O(logN)

  3. 稳定性:不稳定

🎀4. 归并排序

mer_s

归并排序的思想就是分治,将一个序列看作n个子序列,然后将子序列排好序之后两两归并,这个方法也成为二路归并

image-20230903155116968

🎁4.1 递归

//归并排序
void _MergeSort(int* a, int begin, int end, int* tmp)
{if (begin >= end)return;//分割区间int mid = (begin + end) / 2;//子区间递归排序//[begin,mid] [mid+1,end]_MergeSort(a, begin, mid, tmp);_MergeSort(a, mid+1, end, tmp);//归并int begin1 = begin;int begin2 = mid+1;int end1 = mid;int end2 = end;int index = begin;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2])tmp[index++] = a[begin1++];elsetmp[index++] = a[begin2++];}//防止未结束的区间while (begin1 <= end1){tmp[index++] = a[begin1++];}while (begin2 <= end2){tmp[index++] = a[begin2++];}//拷贝回原序列memcpy(a + begin, tmp + begin, sizeof(int) * (end - begin + (int)1));
}void MergeSort(int* a, int n)
{//开辟临时空间int* tmp = (int*)malloc(sizeof(int) * n);if (tmp == NULL){perror("malloc fail\n");exit(-1);}_MergeSort(a, 0, n - 1, tmp);free(tmp);
}

🎁4.2 非递归

image-20230903222757844

归并排序的非递归需要注意的就是边界问题,我们每次都是分为2组归并,如果是单数的话,会发生越界行为,所以要查看这两组的区间:

image-20230903225002835

  1. begin1,取值为i,所以肯定不会越界

  2. end1如果越界,后面的肯定越界,无需进行归并

  3. end1没有越界,begin2如果越界,无需进行归并

  4. begin2没有越界,end2越界,需要归并,修正end2

void MergeSortNonR(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int) * n);if (tmp == NULL){perror("malloc fail\n");exit(-1);}int gap = 1;while (gap < n){for (int i = 0; i < n; i += 2 * gap){//归并int begin1 = i;int end1 = i + gap - 1;int begin2 = i + gap;int end2 = i + 2 * gap - 1;//修正	外面一次性拷贝//if (end1 >= n)//{//	//不归并//	end1 = n - 1;//	//给一个不存在区间//	begin2 = n;//	end2 = n - 1;//}//else if (begin2 >= n)//{//	//不归并		修正成不存在的区间//	begin2 = n;//	end2 = n - 1;//}//else if (end2 >= n)//{//	//修正//	end2 = n - 1;//}if (end1 >= n || begin2 >= n){break;}if (end2 >= n){end2 = n - 1;}int index = i;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2])tmp[index++] = a[begin1++];elsetmp[index++] = a[begin2++];}//防止未结束的区间while (begin1 <= end1){tmp[index++] = a[begin1++];}while (begin2 <= end2){tmp[index++] = a[begin2++];}memcpy(a + i, tmp + i, sizeof(int) * (end2 - i + 1));}//外面拷贝,一把梭哈//memcpy(a, tmp, sizeof(int) * n);gap *= 2;}free(tmp);
}

归并排序特性:

  1. 时间复杂度:O(N*logN)
  2. 空间复杂度:O(N)
  3. 稳定性:稳定
  4. 归并排序更多解决的是磁盘中的外排序问题

🎫5. 性能测试

测试性能我们开release版本,火力全开;

测试环境为Linux的g++

本次只是简单的进行测试,可能会有偶然性

void TestOP()
{srand(time(0));const int N = 10000;	//1w//const int N = 100000;	//10w//const int N = 5000000;	//100w//const int N = 10000000;	//1000w//const int N = 100000000;	//1亿int* a1 = (int*)malloc(sizeof(int) * N);int* a2 = (int*)malloc(sizeof(int) * N);int* a3 = (int*)malloc(sizeof(int) * N);int* a4 = (int*)malloc(sizeof(int) * N);int* a5 = (int*)malloc(sizeof(int) * N);int* a6 = (int*)malloc(sizeof(int) * N);int* a7 = (int*)malloc(sizeof(int) * N);int* a8 = (int*)malloc(sizeof(int) * N);for (int i = 0; i < N; i++){a1[i] = rand();a2[i] = a1[i];a3[i] = a1[i];a4[i] = a1[i];//a4[i] = 2;a5[i] = a1[i];a6[i] = a1[i];a7[i] = a1[i];a8[i] = a1[i];}int begin1 = clock();InsertSort(a1, N);int end1 = clock();int begin2 = clock();ShellSort(a2, N);int end2 = clock();int begin3 = clock();SelectSort(a3, N);int end3 = clock();int begin4 = clock();HeapSort(a3, N);int end4 = clock();int begin5 = clock();BubbleSort(a5, N);int end5 = clock();int begin6 = clock();QuickSort(a4, 0, N - 1);int end6 = clock();int begin7 = clock();MergeSort(a6, N);int end7 = clock();std::vector<int> v(a8, a8 + N);int begin8 = clock();std::sort(v.begin(),v.end());int end8 = clock();printf("InsertSort:%d\n", end1 - begin1);printf("ShellSort:%d\n", end2 - begin2);printf("SeletSort:%d\n", end3 - begin3);printf("HeapSort:%d\n", end4 - begin4);printf("BubbleSort:%d\n", end5 - begin5);printf("QuickSort:%d\n", end6 - begin6);printf("MergeSort:%d\n", end7 - begin7);printf("STLSort:%d\n", end8 - begin8);free(a1);free(a2);free(a3);free(a4);free(a5);free(a6);free(a7);free(a8);
}

🎖5.1 1w数据

在1w数据这个量级,对于希尔排序、堆排序、快排、归并排序,都是挠痒痒,忽略不计

image-20230903234042810

🎖5.2 10w数据

在10w这个量级,显然直接插入排序、直接选择排序、冒泡排序都以不堪重负,而对于这些时间复杂度度在O(N*logN)量级的排序,才刚刚开始

image-20230903234713804

🎖5.3 100w数据

到了100w这个量级,就不再对量级为O(N2)进行测试了,他们坐小孩儿那桌

image-20230903235017232

这里可以看出,快排还得是快排

🎖5.4 1000w数据

到1000w这个量级,堆排序就有点扛不住了

image-20230903235510985

🎖5.5 1亿数据

在一亿这个量级,服务器有点跑不动了

image-20230904000200387

换到Windows环境参考,这个具体还得看机器和优化,不是特别具有参考意义,但可以看一下C++库里面的快排实现
image-20230904000816347


那本期的分享就到这里,我们下期再见,如果还有下期的话。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/97393.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QT建立TCP服务器

QT core gui network *************************************************** #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTcpServer> //服务器头文件 #include <QTcpSocket>//客户端头文件 #include <QList>//存放客户端…

垃圾回收 - 复制算法

GC复制算法是Marvin L.Minsky在1963年研究出来的算法。说简单点&#xff0c;就是只把某个空间的活动对象复制到其它空间&#xff0c;把原空间里的所有对象都回收掉。这是一个大胆的想法。在此&#xff0c;我们将复制活动对象的原空间称为From空间&#xff0c;将粘贴活动对象的新…

海天tech注塑机数据采集测试软件

本测试软件支持采集海天/力劲系列注塑机&#xff0c;弘讯TECH1、弘讯AK628、 弘讯TECH2、弘讯AK668等型号控制器。 采集数据类型示例如下&#xff1a; 设备状态、报警信息、开模总数 输出压力、速度、背压 射出、模座、托模位置 温度一~九段 开模、关模、高压、低压 射…

【爬虫小知识】如何利用爬虫爬网页——python爬虫

前言 网络时代的到来&#xff0c;给我们提供了海量的信息资源&#xff0c;但是&#xff0c;想要获取这些信息&#xff0c;手动一个一个网页进行查找&#xff0c;无疑是一项繁琐且效率低下的工作。这时&#xff0c;爬虫技术的出现&#xff0c;为我们提供了一种高效的方式去获取…

IntelliJ IDEA的远程开发(Remote Development)

DEA的远程开发功能&#xff0c;可以将本地的编译、构建、调试、运行等工作都放在远程服务器上执行&#xff0c;而本地仅运行客户端软件进行常规的开发操作即可&#xff0c;官方给出的逻辑图如下&#xff0c;可见通过本地的IDE和服务器上的IDE backend将本地电脑和服务器打通&am…

爬虫源码---爬取小猫猫交易网站

前言&#xff1a; 本片文章主要对爬虫爬取网页数据来进行一个简单的解答&#xff0c;对与其中的数据来进行一个爬取。 一&#xff1a;环境配置 Python版本&#xff1a;3.7.3 IDE:PyCharm 所需库&#xff1a;requests &#xff0c;parsel 二&#xff1a;网站页面 我们需要…

poi-tl设置图片(通过word模板替换关键字,然后转pdf文件并下载)

选中图片右击 选择设置图片格式 例如word模板 maven依赖 <!-- java 读取word文件里面的加颜色的字体 转pdf 使用 --><dependency><groupId> e-iceblue </groupId><artifactId>spire.doc.free</artifactId><version>3.9.0</ver…

Java Web3J :使用web3j监听、查询、订阅智能合约的事件

前面有文章写如何使用Docker-compose方式部署blockscout浏览器+charts图表,区块链浏览器已经部署成功了,同时我们在链上增加了治理投票流程,如何实时的把治理事件快速同步到浏览器呢?这时就想到了Web3J来监听智能合约的事件,来达到同步事件的效果 目录 Web3J简介功能简介m…

无需租云服务器,Linux本地搭建web服务,并内网穿透发布公网访问

文章目录 前言1. 本地搭建web站点2. 测试局域网访问3. 公开本地web网站3.1 安装cpolar内网穿透3.2 创建http隧道&#xff0c;指向本地80端口3.3 配置后台服务 4. 配置固定二级子域名5. 测试使用固定二级子域名访问本地web站点 前言 在web项目中,部署的web站点需要被外部访问,则…

Python操作Excel教程(图文教程,超详细)Python xlwings模块详解,

「作者主页」&#xff1a;士别三日wyx 「作者简介」&#xff1a;CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」&#xff1a;小白零基础《Python入门到精通》 xlwings模块详解 1、快速入门1、打开Excel2、创建工作簿2.1、使用工作簿2.2、操作…

【Eclipse】搭建python环境;运行第一个python程序helloword

目录 0.环境 1.需准备&搭建思路 2.搭建具体步骤 1&#xff09;查看是否安装过python 2&#xff09;安装eclipse 3&#xff09;安装和配置pyDev 3.创建第一个python程序具体步骤 1&#xff09;新建项目 2&#xff09;输入项目名字&#xff0c;和配置选项 3&#x…

STM32WB55开发(1)----套件概述

STM32WB55开发----1.套件概述 所用器件视频教学样品申请优势支持协议系统控制和生态系统访问功能示意图系统框图跳线设置开发板原理图 所用器件 所使用的器件是我们自行设计的开发板&#xff0c;该开发板是基于 STM32WB55 系列微控制器所构建。STM32WBXX_VFQFPN68 不仅是一款评…