Python实现猎人猎物优化算法(HPO)优化Catboost分类模型(CatBoostClassifier算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。




1.项目背景

猎人猎物优化搜索算法(Hunter–prey optimizer, HPO)是由Naruei& Keynia于2022年提出的一种最新的优化搜索算法。受到捕食动物(如狮子、豹子和狼)和猎物(如雄鹿和瞪羚)的行为的启发,他们根据猎人和猎物的位置移动方法设计了一种新型的搜索方式及自适应度更新的方法。

本项目通过HPO猎人猎物优化算法优化Catboost分类模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

 

从上图可以看到,总共有11个变量,数据中无缺失值,共1000条数据。

关键代码:

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:   

4.探索性数据分析

4.1 y变量柱状图

用Matplotlib工具的plot()方法绘制柱状图:

4.2 y=1样本x1变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4.3 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。  

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建HPO猎人猎物优化算法优化CATBOOST分类模型

主要使用HPO猎人猎物优化算法优化CATBOOST分类算法,用于目标分类。

6.1 HPO猎人猎物优化算法寻找最优的参数值   

最优参数:

 

6.2 最优参数值构建模型

7.模型评估

7.1 评估指标及结果

评估指标主要包括准确率、查准率、查全率、F1分值等等。

从上表可以看出,F1分值为0.9231,说明模型效果较好。

关键代码如下:

7.2 分类报告

  

从上图可以看出,分类为0的F1分值为0.94;分类为1的F1分值为0.92。

7.3 混淆矩阵

从上图可以看出,实际为0预测不为0的 有7个样本;实际为1预测不为1的 有7个样本,整体预测准确率良好。

8.结论与展望

综上所述,本文采用了HPO猎人猎物优化算法寻找CATBOOST算法的最优参数值来构建分类模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

def __init__(self, m, T, lb, ub, R, C, X_train, y_train, X_test, y_test):self.M = m  # 种群个数self.T = T  # 迭代次数self.lb = lb  # 下限self.ub = ub  # 上限self.R = R  # 行self.C = C  # 列self.b = 0.1  # 调节参数self.X_train = X_train  # 训练集特征self.X_test = X_test  # 测试集特征self.y_train = y_train  # 训练集标签self.y_test = y_test  # 测试集标签# ******************************************************************************# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:# 链接:https://pan.baidu.com/s/1-P7LMzRZysEV1WgmQCpp7A # 提取码:5fv7# ******************************************************************************# 提取特征变量和标签变量
y = df['y']
X = df.drop('y', axis=1)# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/108447.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue学习之属性绑定

内容渲染 采用 &#xff1a;进行属性渲染创建 demo3.html,内容如下 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"&…

LeetCode 1359. Count All Valid Pickup and Delivery Options【动态规划,组合数学】1722

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…

BGP路由属性

任何一条BGP路由都拥有多个路径属性&#xff08;Path Attributes&#xff09;&#xff0c;当路由器通告BGP路由给它的对等体时&#xff0c;该路由将会携带多个路径属性&#xff0c;这些属性描述了BGP路由的各项特征&#xff0c;同时在某些场景下也会影响BGP路由优选的决策。 一…

百度收录和权重怎么提升-网站如何获得百度权重

你是否一直苦恼于网站权重的低迷&#xff1f;不知道如何开始提升网站权重&#xff0c;缺乏优质内容更新网站。不清楚如何进行关键词优化来提升网站排名和权重。SEO是一个需要持续投入时间和资源的过程。每个网站的情况都会有所不同&#xff0c;因此所花费的时间也会有所差异。然…

Spring基础(2w字---学习总结版)

目录 一、Spirng概括 1、什么是Spring 2、什么是容器 3、什么是IoC 4、模拟实现IoC 4.1、传统的对象创建开发 5、理解IoC容器 6、DI概括 二、创建Spring项目 1、创建spring项目 2、Bean对象 2.1、创建Bean对象 2.2、存储Bean对象&#xff08;将Bean对象注册到容器…

Apollo介绍和入门

文章目录 Apollo介绍配置中心介绍apollo介绍主流配置中心功能特性对比 Apollo简介 入门简单的执行流程Apollo具体的执行流程Apollo对象执行流程分步执行流程 核心概念应用&#xff0c;环境&#xff0c;集群&#xff0c;命名空间企业部署方案灰度发布全量发布 配置发布的原理发送…

HCIE-HCS规划设计搭建

1、相关术语 1、等价路由 等价路由&#xff08;Equal-cost routing&#xff09;是一种网络路由策略&#xff0c;用于在网络中选择多个具有相同路由度量&#xff08;路由距离或成本&#xff09;的最佳路径之一来转发数据流量。 当存在多个路径具有相同的路由度量时&#xff0c;…

“系统的UI”——SystemUI

SystemUI的实现 以StatusBar为例&#xff0c;来分析下Android系统具体是如何实现它们的。 相关代码分为两部分&#xff0c;即&#xff1a; Service部分 代码路径&#xff1a;frameworks/base/services/java/com/android/server。 应用部分 代码路径&#xff1a;frameworks…

聚合物发光材料荧光量子效率测量

近年来‚聚合物发光材料与器件受到人们的极大关注和高度重视‚其关键是聚合物发光器件具有光吸收范围宽‚吸收强度大‚发光效率高‚激发阈值低以及制备工艺简便灵活等显著特点‚已成为有机固体激光领域一个新的研究热点。 现有的聚合物发光材料体系主要集中在&#xff1a;聚噻…

【环境配置】基于Docker配置Chisel-Bootcamp环境

文章目录 Chisel是什么Chisel-Bootcamp是什么基于Docker配置Chisel-Bootcamp官网下载Docker安装包Docker换源启动Bootcamp镜像常用docker命令 可能产生的问题 Chisel是什么 Chisel是Scala语言的一个库&#xff0c;可以由Scala语言通过import引入。 Chisel编程可以生成Verilog代…

mysql文档--innodb中的重头戏--事务隔离级别!!!!--举例学习--现象演示

阿丹&#xff1a; 先要说明一点就是在网上现在查找的mysql中的事务隔离级别其实都是在innodb中的事务隔离级别。因为在mysql的5.5.5版本后myisam被innodb打败&#xff0c;从此innodb成为了mysql中的默认存储引擎。所以在网上查找的事务隔离级别基本上都是innodb的。并且支持事务…

数据结构 > 算法的时间复杂度(1)

目录 1.算法效率 1.1如何衡量一个算法的好坏 1.2算法的复杂度 1.3复杂度在校招中的考察 2.时间复杂度 2.1时间复杂度的概念 2.2大O的渐进表示法 2.3特殊情况 1.算法效率 1.1如何衡量一个算法的好坏 如何衡量一个算法的好坏呢&#xff1f;比如对于以下斐波那契数列&…