【深度学习 AIGC】stablediffusion-infinity 在无界限画布中输出绘画 Outpainting

代码:https://github.com/lkwq007/stablediffusion-infinity/tree/master

启动环境:

git clone --recurse-submodules https://github.com/lkwq007/stablediffusion-infinity
cd stablediffusion-infinity
conda env create -f environment.yml
conda activate sd-inf# 一定更新一下!
conda install -c conda-forge diffusers transformers ftfy accelerate
conda update -c conda-forge diffusers transformers ftfy accelerate
pip install -U gradiopython app.py

修改了一下app.py的东西,最后面修改了ip和端口:

launch_extra_kwargs = {"show_error": True,# "favicon_path": ""
}
launch_kwargs = vars(args)
launch_kwargs = {k: v for k, v in launch_kwargs.items() if v is not None}
print(launch_kwargs)
launch_kwargs.pop("remote_model", None)
launch_kwargs.pop("local_model", None)
launch_kwargs.pop("fp32", None)
launch_kwargs.pop("lowvram", None)
launch_kwargs.update(launch_extra_kwargs)
try:import google.colablaunch_kwargs["debug"] = True
except:passif RUN_IN_SPACE:print("run in space")demo.launch()
elif args.debug:print(111111111)launch_kwargs["share"]=Truelaunch_kwargs["server_name"] = "0.0.0.0"launch_kwargs["server_port"] = 8000demo.queue().launch(**launch_kwargs)
else:print(222222222)launch_kwargs["share"]=Truelaunch_kwargs["server_name"] = "0.0.0.0"launch_kwargs["server_port"] = 8000demo.queue().launch(**launch_kwargs)

可以对照一下环境:


(sd-inf)   Thu Sep 1420:59:37    /ssd/xiedong/stablediffusion-infinity  pip list
Package                       Version
----------------------------- ---------
absl-py                       1.3.0
accelerate                    0.22.0
aiofiles                      23.2.1
aiohttp                       3.8.1
aiosignal                     1.3.1
altair                        5.1.1
antlr4-python3-runtime        4.9.3
anyio                         3.6.2
async-timeout                 4.0.2
attrs                         23.1.0
backports.functools-lru-cache 1.6.4
bcrypt                        4.0.1
brotlipy                      0.7.0
cachetools                    5.2.0
certifi                       2023.7.22
cffi                          1.15.1
charset-normalizer            2.0.4
click                         8.1.3
cloudpickle                   2.0.0
cmake                         3.25.0
colorama                      0.4.6
commonmark                    0.9.1
contourpy                     1.0.6
cryptography                  38.0.1
cycler                        0.11.0
cytoolz                       0.12.0
dask                          2022.7.0
dataclasses                   0.8
datasets                      2.7.0
diffusers                     0.14.0
dill                          0.3.6
einops                        0.4.1
fastapi                       0.87.0
ffmpy                         0.3.0
filelock                      3.8.0
fonttools                     4.38.0
fpie                          0.2.4
frozenlist                    1.3.0
fsspec                        2022.10.0
ftfy                          6.1.1
google-auth                   2.14.1
google-auth-oauthlib          0.4.6
gradio                        3.44.2
gradio_client                 0.5.0
grpcio                        1.51.0
h11                           0.12.0
httpcore                      0.15.0
httpx                         0.23.1
huggingface-hub               0.17.1
idna                          3.4
imagecodecs                   2021.8.26
imageio                       2.19.3
importlib-metadata            5.0.0
importlib-resources           6.0.1
Jinja2                        3.1.2
joblib                        1.2.0
jsonschema                    4.19.0
jsonschema-specifications     2023.7.1
kiwisolver                    1.4.4
linkify-it-py                 1.0.3
llvmlite                      0.39.1
locket                        1.0.0
Markdown                      3.4.1
markdown-it-py                2.1.0
MarkupSafe                    2.1.1
matplotlib                    3.6.2
mdit-py-plugins               0.3.1
mdurl                         0.1.2
mkl-fft                       1.3.1
mkl-random                    1.2.2
mkl-service                   2.4.0
multidict                     6.0.2
multiprocess                  0.70.12.2
networkx                      2.8.4
numba                         0.56.4
numpy                         1.23.4
oauthlib                      3.2.2
omegaconf                     2.2.3
opencv-python                 4.6.0.66
opencv-python-headless        4.6.0.66
orjson                        3.8.2
packaging                     21.3
pandas                        1.4.2
paramiko                      2.12.0
partd                         1.2.0
Pillow                        9.2.0
pip                           22.2.2
protobuf                      3.20.3
psutil                        5.9.1
pyarrow                       8.0.0
pyasn1                        0.4.8
pyasn1-modules                0.2.8
pycparser                     2.21
pycryptodome                  3.15.0
pydantic                      1.10.2
pyDeprecate                   0.3.2
pydub                         0.25.1
Pygments                      2.13.0
PyNaCl                        1.5.0
pyOpenSSL                     22.0.0
pyparsing                     3.0.9
PySocks                       1.7.1
python-dateutil               2.8.2
python-multipart              0.0.5
pytorch-lightning             1.7.7
pytz                          2022.6
PyWavelets                    1.3.0
PyYAML                        6.0
referencing                   0.30.2
regex                         2022.4.24
requests                      2.28.1
requests-oauthlib             1.3.1
responses                     0.18.0
rfc3986                       1.5.0
rich                          12.6.0
rpds-py                       0.10.3
rsa                           4.9
sacremoses                    0.0.53
safetensors                   0.3.2
scikit-image                  0.19.2
scipy                         1.9.3
semantic-version              2.10.0
setuptools                    65.5.0
six                           1.16.0
sniffio                       1.3.0
sourceinspect                 0.0.4
starlette                     0.21.0
taichi                        1.2.2
tensorboard                   2.11.0
tensorboard-data-server       0.6.1
tensorboard-plugin-wit        1.8.1
tifffile                      2021.7.2
timm                          0.6.11
tokenizers                    0.11.4
toolz                         0.12.0
torch                         1.13.0
torchaudio                    0.13.0
torchmetrics                  0.10.3
torchvision                   0.14.0
tqdm                          4.64.1
transformers                  4.33.1
typing_extensions             4.3.0
uc-micro-py                   1.0.1
urllib3                       1.26.12
uvicorn                       0.20.0
wcwidth                       0.2.5
websockets                    10.4
Werkzeug                      2.2.2
wheel                         0.37.1
xxhash                        0.0.0
yarl                          1.7.2
zipp                          3.10.0

路径下建立一个stabilityai,然后下载stable-diffusion-2-inpainting放进去,sd-vae-ft-mse是stable-diffusion-2-inpainting/vae里的东西复制了一遍。

(sd-inf)   Thu Sep 1421:00:31    /ssd/xiedong/stablediffusion-infinity  tree stabilityai/
stabilityai/
├── sd-vae-ft-mse
│   ├── config.json
│   ├── diffusion_pytorch_model.bin
│   ├── diffusion_pytorch_model.fp16.bin
│   ├── diffusion_pytorch_model.fp16.safetensors
│   └── diffusion_pytorch_model.safetensors
└── stable-diffusion-2-inpainting├── 512-inpainting-ema.ckpt├── 512-inpainting-ema.safetensors├── feature_extractor│   └── preprocessor_config.json├── merged-leopards.png├── model_index.json├── README.md├── scheduler│   └── scheduler_config.json├── sd-vae-ft-mse-original│   ├── README.md│   ├── vae-ft-mse-840000-ema-pruned.ckpt│   └── vae-ft-mse-840000-ema-pruned.safetensors├── text_encoder│   ├── config.json│   ├── model.fp16.safetensors│   ├── model.safetensors│   ├── pytorch_model.bin│   └── pytorch_model.fp16.bin├── tokenizer│   ├── merges.txt│   ├── special_tokens_map.json│   ├── tokenizer_config.json│   └── vocab.json├── unet│   ├── config.json│   ├── diffusion_pytorch_model.bin│   ├── diffusion_pytorch_model.fp16.bin│   ├── diffusion_pytorch_model.fp16.safetensors│   └── diffusion_pytorch_model.safetensors└── vae├── config.json├── diffusion_pytorch_model.bin├── diffusion_pytorch_model.fp16.bin├── diffusion_pytorch_model.fp16.safetensors└── diffusion_pytorch_model.safetensors

然后就可以用了:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/111623.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LeetCode-简单题】1047. 删除字符串中的所有相邻重复项

文章目录 题目方法一&#xff1a;利用栈做匹配方法二&#xff1a;消消乐 题目 方法一&#xff1a;利用栈做匹配 class Solution {public String removeDuplicates(String s) {Deque<Character> deque new LinkedList<>();StringBuffer str new StringBuffer();fo…

Java 华为真题-选修课

需求&#xff1a; 现有两门选修课&#xff0c;每门选修课都有一部分学生选修&#xff0c;每个学生都有选修课的成绩&#xff0c;需要你找出同时选修了两门选修课的学生&#xff0c;先按照班级进行划分&#xff0c;班级编号小的先输出&#xff0c;每个班级按照两门选修课成绩和的…

c语言练习58:⾃定义类型:结构体

⾃定义类型&#xff1a;结构体 结构体的概念 结构是⼀些值的集合&#xff0c;这些值称为成员变量。结构的每个成员可以是不同类型的变量。 结构体是一个种自定义的数据类型&#xff0c;它可以由很多个默认数据类型组成。它主要用于描述复杂场景下的变量。 例如&#xff0c;想…

2023-简单点-IOU计算

机器视觉中的坐标体系 注意区分x,y坐标系和row,col排布 IOU交集 代码 def IOU(RecA, RecB):recA是坐标形式是[X[左上点],y[左上点],x[右下点],y[右下点]]#找到交集框的左上和右下点&#xff0c;可以计算交集面积xA max(RecA[0], RecB[0])yA max(RecA[1], RecB[1])xB min(R…

games101 作业2

题目 光栅化一个三角形 1. 创建三角形的 2 维 bounding box。 2. 遍历此 bounding box 内的所有像素&#xff08;使用其整数索引&#xff09;。然后&#xff0c;使用像素中心的屏幕空间坐标来检查中心点是否在三角形内。 3. 如果在内部&#xff0c;则将其位置处的插值深度值 (…

UINT64整型数据在格式化时使用了不匹配的格式化符%d导致其他参数无法打印的问题排查

目录 1、问题描述 2、格式化函数内部解析待格式化参数的完整机制说明 2.1、传递给被调用函数的参数是通过栈传递的 2.2、格式化函数是如何从栈上找到待格式化的参数值&#xff0c;并完成格式化的&#xff1f; 2.3、字符串格式化符%s对应的异常问题场景说明 2.4、为了方便…

旋转角度对迭代次数的影响

( A, B )---3*30*2---( 1, 0 )( 0, 1 ) 让网络的输入只有3个节点&#xff0c;AB训练集各由5张二值化的图片组成&#xff0c;让A中有3个1&#xff0c;B中全是0&#xff0c;统计迭代次数并排序。 在3*5的空间内分布3个点有19种可能&#xff0c;但不同的分布只有6种 差值就诶够 …

C生万物之函数

前言&#xff1a; &#x1f4d5;作者简介&#xff1a;热爱编程的小七&#xff0c;致力于C、Java、Python等多编程语言&#xff0c;热爱编程和长板的运动少年&#xff01; &#x1f4d8;相关专栏Java基础语法&#xff0c;JavaEE初阶&#xff0c;数据库&#xff0c;数据结构和算法…

什么是集成测试?集成测试方法有哪些?

1、基本概念&#xff1a; 将软件集成起来后进行测试。集成测试又叫子系统测试、组装测试、部件测试等。集成测试主要是针对软件高层设计进行测试&#xff0c;一般来说是以模块和子系统为单位进行测试。 2、集成测试包含的层次&#xff1a; 1. 模块内的集成&#xff0c;主要是…

【微信小程序】文章设置

设置基本字体样式&#xff1a;行高、首行缩进 font-size: 32rpx;line-height: 1.6em;text-indent: 2em;padding: 20rpx 0;border-bottom: 1px dashed var(--themColor); 两端对齐 text-align: justify; css文字两行或者几行显示省略号 css文字两行或者几行显示省略号_css…

蓝牙核心规范(V5.4)10.1-BLE 入门笔记(1)

ble 规范 深入了解蓝牙LE需要熟悉相关的规格。蓝牙LE的架构、程序和协议由一项关键规范完全定义,称为蓝牙核心规范。产品如何使用蓝牙以实现互操作性由两种特殊类型称为配置文件和服务的规范集合所涵盖。图1展示了BLE规范类型及其相互关系。 1.1 蓝牙核心规范 蓝牙核心规范是…

多线程和并发编程(3)—AQS和ReentrantLock实现的互斥锁

一、管程模型—MESA模型 管程是什么&#xff1f; 管程就是指管理共享变量&#xff0c;以及对共享变量的相关操作。 在管程的发展史上&#xff0c;先后出现过三种不同的管程模型&#xff0c;分别是Hasen模型、Hoare模型和MESA模型。现在正在广泛使用的是MESA模型。 MESA模型…