竞赛选题 基于深度学习的人脸性别年龄识别 - 图像识别 opencv

文章目录

  • 0 前言
  • 1 课题描述
  • 2 实现效果
  • 3 算法实现原理
    • 3.1 数据集
    • 3.2 深度学习识别算法
    • 3.3 特征提取主干网络
    • 3.4 总体实现流程
  • 4 具体实现
    • 4.1 预训练数据格式
    • 4.2 部分实现代码
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 毕业设计 人脸性别年龄识别系统 - 图像识别 opencv

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题描述

随着大数据与人工智能逐渐走入人们的生活,计算机视觉应用越发广泛。如医疗影像识别、无人驾驶车载视觉、通用物体识别、自然场景下的文本识别等,根据不同的应用场景,人脸研究方向可以分为人脸检测、身份识别、性别识别、年龄预测、种族识别、表情识别等。近年来,人脸身份识别技术发展迅猛,在生活应用中取得了较好的效果,也逐渐趋于成熟,而年龄识别与性别预测,仍然是生物特征识别研究领域中一项具有挑战性的课题。

课题意义

相比人脸性别属性而言,人脸年龄属性的研究更富有挑战性。主要有两点原因,首先每个人的年龄会随着身体健康状况、皮肤保养情况而表现得有所不同,即便是在同一年,表现年龄会随着个人状态的不同而改变,人类识别尚且具有较高难度。其次,可用的人脸年龄估计数据集比较少,不同年龄的数据标签收集不易,现有大多数的年龄数据集都是在不同的复杂环境下的照片、人脸图片存在光照变化较复杂、部分遮挡、图像模糊、姿态旋转角度较大等一系列问题,对人脸模型的鲁棒性产生了较大的影响。

2 实现效果

这里废话不多说,先放上大家最关心的实现效果:

输入图片:
在这里插入图片描述

识别结果:

在这里插入图片描述

或者实时检测
在这里插入图片描述
在这里插入图片描述

3 算法实现原理

3.1 数据集

学长收集的数据集:
该人脸数据库的图片来源于互联网的爬取,而非研究机构整理,一共含有13000多张人脸图像,在这个数据集中大约有1860张图片是成对出现的,即同一个人的2张不同照片,有助于人脸识别算法的研究,图像标签中标有人的身份信息,人脸坐标,关键点信息,可用于人脸检测和人脸识别的研究,此数据集是对人脸算法效果验证的权威数据集.

在这里插入图片描述
该数据集包含的人脸范围比较全面,欧亚人种都有。

3.2 深度学习识别算法

卷积神经网络是常见的深度学习架构,而在CNN出现之前,图像需要处理的数据量过大,导致成本很高,效率很低,图像在数字化的过程中很难保留原有的特征,导致图像处理的准确率不高。CNN的出现使得提取特征的能力变得更强,为更多优秀网络的研究提供了有力的支撑。CNN的核心思想是利用神经网络模拟人脑视觉神经系统,构造多个神经元并建立彼此之间的联系。不同的神经元进行分工,浅层神经元处理低纬度图像特征,深层神经元处理图像高级特征、语义信息等,CNN的网络结构主要由卷积层、BN层、激活层、池化层、全连接层、损失函数层构成,多个层协同工作实现了特征提取的功能,并通过特有的网络结构降低参数的数量级,防止过拟合,最终得到输出结果.

CNN传承了多层感知机的思想,并受到了生物神经科学的启发,通过卷积的运算模拟人类视觉皮层的“感受野”。不同于传统的前馈神经网络,卷积运算对图像的区域值进行加权求和,最终以神经元的形式进行输出。前馈神经网络对每一个输入的信号进行加权求和:

  • (a)图是前馈神经网络的连接方式
  • (b)图是CNN的连接方式。

在这里插入图片描述
cnn框架如下:
在这里插入图片描述

3.3 特征提取主干网络

在深度学习算法研究中,通用主干特征提取网络结合特定任务网络已经成为一种标准的设计模式。特征提取对于分类、识别、分割等任务都是至关重要的部分。下面介绍本文研究中用到的主干神经网络。

ResNet网络
ResNet是ILSVRC-2015的图像分类任务冠军,也是CVPR2016的最佳论文,目前应用十分广泛,ResNet的重要性在于将网络的训练深度延伸到了数百层,而且取得了非常好的效果。在ResNet出现之前,网络结构一般在20层左右,对于一般情况,网络结构越深,模型效果就会越好,但是研究人员发现加深网络反而会使结果变差。

在这里插入图片描述

人脸特征提取我这里选用ResNet,网络结构如下:
在这里插入图片描述

3.4 总体实现流程

在这里插入图片描述

4 具体实现

4.1 预训练数据格式

在这里插入图片描述

在这里插入图片描述

4.2 部分实现代码

训练部分代码:

from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_functionfrom six.moves import xrangefrom datetime import datetimeimport timeimport osimport numpy as npimport tensorflow as tffrom data import distorted_inputsfrom model import select_modelimport jsonimport reLAMBDA = 0.01MOM = 0.9tf.app.flags.DEFINE_string('pre_checkpoint_path', '',"""If specified, restore this pretrained model """"""before beginning any training.""")tf.app.flags.DEFINE_string('train_dir', '/home/dpressel/dev/work/AgeGenderDeepLearning/Folds/tf/test_fold_is_0','Training directory')tf.app.flags.DEFINE_boolean('log_device_placement', False,"""Whether to log device placement.""")tf.app.flags.DEFINE_integer('num_preprocess_threads', 4,'Number of preprocessing threads')tf.app.flags.DEFINE_string('optim', 'Momentum','Optimizer')tf.app.flags.DEFINE_integer('image_size', 227,'Image size')tf.app.flags.DEFINE_float('eta', 0.01,'Learning rate')tf.app.flags.DEFINE_float('pdrop', 0.,'Dropout probability')tf.app.flags.DEFINE_integer('max_steps', 40000,'Number of iterations')tf.app.flags.DEFINE_integer('steps_per_decay', 10000,'Number of steps before learning rate decay')tf.app.flags.DEFINE_float('eta_decay_rate', 0.1,'Learning rate decay')tf.app.flags.DEFINE_integer('epochs', -1,'Number of epochs')tf.app.flags.DEFINE_integer('batch_size', 128,'Batch size')tf.app.flags.DEFINE_string('checkpoint', 'checkpoint','Checkpoint name')tf.app.flags.DEFINE_string('model_type', 'default','Type of convnet')tf.app.flags.DEFINE_string('pre_model','',#'./inception_v3.ckpt','checkpoint file')FLAGS = tf.app.flags.FLAGS# Every 5k steps cut learning rate in halfdef exponential_staircase_decay(at_step=10000, decay_rate=0.1):print('decay [%f] every [%d] steps' % (decay_rate, at_step))def _decay(lr, global_step):return tf.train.exponential_decay(lr, global_step,at_step, decay_rate, staircase=True)return _decaydef optimizer(optim, eta, loss_fn, at_step, decay_rate):global_step = tf.Variable(0, trainable=False)optz = optimif optim == 'Adadelta':optz = lambda lr: tf.train.AdadeltaOptimizer(lr, 0.95, 1e-6)lr_decay_fn = Noneelif optim == 'Momentum':optz = lambda lr: tf.train.MomentumOptimizer(lr, MOM)lr_decay_fn = exponential_staircase_decay(at_step, decay_rate)return tf.contrib.layers.optimize_loss(loss_fn, global_step, eta, optz, clip_gradients=4., learning_rate_decay_fn=lr_decay_fn)def loss(logits, labels):labels = tf.cast(labels, tf.int32)cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels, name='cross_entropy_per_example')cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')tf.add_to_collection('losses', cross_entropy_mean)losses = tf.get_collection('losses')regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)total_loss = cross_entropy_mean + LAMBDA * sum(regularization_losses)tf.summary.scalar('tl (raw)', total_loss)#total_loss = tf.add_n(losses + regularization_losses, name='total_loss')loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')loss_averages_op = loss_averages.apply(losses + [total_loss])for l in losses + [total_loss]:tf.summary.scalar(l.op.name + ' (raw)', l)tf.summary.scalar(l.op.name, loss_averages.average(l))with tf.control_dependencies([loss_averages_op]):total_loss = tf.identity(total_loss)return total_lossdef main(argv=None):with tf.Graph().as_default():model_fn = select_model(FLAGS.model_type)# Open the metadata file and figure out nlabels, and size of epochinput_file = os.path.join(FLAGS.train_dir, 'md.json')print(input_file)with open(input_file, 'r') as f:md = json.load(f)images, labels, _ = distorted_inputs(FLAGS.train_dir, FLAGS.batch_size, FLAGS.image_size, FLAGS.num_preprocess_threads)logits = model_fn(md['nlabels'], images, 1-FLAGS.pdrop, True)total_loss = loss(logits, labels)train_op = optimizer(FLAGS.optim, FLAGS.eta, total_loss, FLAGS.steps_per_decay, FLAGS.eta_decay_rate)saver = tf.train.Saver(tf.global_variables())summary_op = tf.summary.merge_all()sess = tf.Session(config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement))tf.global_variables_initializer().run(session=sess)# This is total hackland, it only works to fine-tune iv3if FLAGS.pre_model:inception_variables = tf.get_collection(tf.GraphKeys.VARIABLES, scope="InceptionV3")restorer = tf.train.Saver(inception_variables)restorer.restore(sess, FLAGS.pre_model)if FLAGS.pre_checkpoint_path:if tf.gfile.Exists(FLAGS.pre_checkpoint_path) is True:print('Trying to restore checkpoint from %s' % FLAGS.pre_checkpoint_path)restorer = tf.train.Saver()tf.train.latest_checkpoint(FLAGS.pre_checkpoint_path)print('%s: Pre-trained model restored from %s' %(datetime.now(), FLAGS.pre_checkpoint_path))run_dir = '%s/run-%d' % (FLAGS.train_dir, os.getpid())checkpoint_path = '%s/%s' % (run_dir, FLAGS.checkpoint)if tf.gfile.Exists(run_dir) is False:print('Creating %s' % run_dir)tf.gfile.MakeDirs(run_dir)tf.train.write_graph(sess.graph_def, run_dir, 'model.pb', as_text=True)tf.train.start_queue_runners(sess=sess)summary_writer = tf.summary.FileWriter(run_dir, sess.graph)steps_per_train_epoch = int(md['train_counts'] / FLAGS.batch_size)num_steps = FLAGS.max_steps if FLAGS.epochs < 1 else FLAGS.epochs * steps_per_train_epochprint('Requested number of steps [%d]' % num_steps)for step in xrange(num_steps):start_time = time.time()_, loss_value = sess.run([train_op, total_loss])duration = time.time() - start_timeassert not np.isnan(loss_value), 'Model diverged with loss = NaN'if step % 10 == 0:num_examples_per_step = FLAGS.batch_sizeexamples_per_sec = num_examples_per_step / durationsec_per_batch = float(duration)format_str = ('%s: step %d, loss = %.3f (%.1f examples/sec; %.3f ' 'sec/batch)')print(format_str % (datetime.now(), step, loss_value,examples_per_sec, sec_per_batch))# Loss only actually evaluated every 100 steps?if step % 100 == 0:summary_str = sess.run(summary_op)summary_writer.add_summary(summary_str, step)if step % 1000 == 0 or (step + 1) == num_steps:saver.save(sess, checkpoint_path, global_step=step)if __name__ == '__main__':tf.app.run()

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/111668.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

通过RSYNC在linux和windows间同步文件

通过RSYNC在linux和windows间同步文件 下载windows版本rsync下载后是一个zip的压缩包&#xff0c;直接解压就可使用配置windows到linux的秘钥拷贝公钥文件到linux服务器&#xff0c;实现免密配置同步命令结合windows计划任务实现定时同步文件 下载windows版本rsync 下载链接 h…

后端中间件安装与启动(Redis、Nginx、Nacos、Kafka)

后端中间件安装与启动 RedisNginxNacosKafka Redis 1.打开cmd终端&#xff0c;进入redis文件目录 2.输入redis-server.exe redis.windows.conf即可启动&#xff0c;不能关闭cmd窗口 &#xff08;端口配置方式&#xff1a;redis目录下的redis.windows.conf配置文件&#xff0c;…

MV*结构的发展

一&#xff0c;MVC Model模型&#xff0c;View视图&#xff0c;Controller控制器 理解&#xff1a; MVC就是将最原始的繁琐流程进行模块化&#xff0c;Model负责从数据库取数据&#xff0c;View负责展示获取的数据&#xff0c;用户在View进行操作&#xff0c;Controller处理…

Android13 通知栏和设置显示中添加副屏亮度条,调节副屏亮度

由于台式的Android设备&#xff0c;存在着两个屏幕显示的情况&#xff0c;故需要对Android系统开发一个可以调节副屏亮度的功能。 提交副屏亮度调节的效果如下&#xff1a; 涉及修改的文件如下&#xff1a; frameworks/base/services/core/java/com/android/server/am/Acti…

《PostgreSQL中的JSON处理:技巧与应用》

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f405;&#x1f43e;猫头虎建议程序员必备技术栈一览表&#x1f4d6;&#xff1a; &#x1f6e0;️ 全栈技术 Full Stack: &#x1f4da…

【LeetCode-中等题】150. 逆波兰表达式求值

文章目录 题目方法一&#xff1a;栈 题目 方法一&#xff1a;栈 class Solution {public int evalRPN(String[] tokens) {Deque<Integer> deque new LinkedList<>();String rpn "-*/";//符号集 用来判断扫描的是否为运算符int sum 0;for(int i 0 ; i…

【PyTorch 攻略 (3/7)】线性组件、激活函数

一、说明 神经网络是由层连接的神经元的集合。每个神经元都是一个小型计算单元&#xff0c;执行简单的计算来共同解决问题。它们按图层组织。有三种类型的层&#xff1a;输入层、隐藏层和输出层。每层包含许多神经元&#xff0c;但输入层除外。神经网络模仿人脑处理信息的方式。…

Redis环境配置

【Redis解压即可】链接&#xff1a;https://pan.baidu.com/s/1y4xVLF8-8PI8qrczbxde9w?pwd0122 提取码&#xff1a;0122 【Redis桌面工具】 链接&#xff1a;https://pan.baidu.com/s/1IlsUy9sMfh95dQPeeM_1Qg?pwd0122 提取码&#xff1a;0122 Redis安装步骤 1.先打开Redis…

企业架构LNMP学习笔记51

企业案例使用&#xff1a; 主从模式&#xff1a; 缓存集群结构示意图&#xff1a; 去实现Redis的业务分离&#xff1a; 读的请求分配到从服务器上&#xff0c;写的请求分配到主服务器上。 Redis是没有中间件来进行分离的。 是通过业务代码直接来进行读写分离。 准备两台虚…

Vue中如何进行表格排序与过滤

Vue中如何进行表格排序与过滤 在Vue.js中&#xff0c;表格是一个常见的数据展示方式。很多时候&#xff0c;我们需要对表格中的数据进行排序和过滤&#xff0c;以提供更好的用户体验。本文将介绍如何在Vue中实现表格的排序和过滤功能&#xff0c;并提供相关的代码示例。 准备工…

Scapy 解析 pcap 文件从HTTP流量中提取图片

Scapy 解析 pcap 文件从HTTP流量中提取图片 前言一、网络环境示例二、嗅探流量示例三、pcap 文件处理最后参考 ​ 作者&#xff1a;高玉涵 ​ 时间&#xff1a;2023.9.17 10:25 ​ 环境&#xff1a;Linux kali 5.15.0-kali3-amd64&#xff0c;Python 3.11.4&#xff0c;scapy…

Unity Shader顶点数据疑问

1&#xff09;Unity Shader顶点数据疑问 2&#xff09;Unity 2018发布在iOS 16.3偶尔出现画面不动的问题 3&#xff09;安卓游戏启动后提示“应用程序异常” 这是第352篇UWA技术知识分享的推送&#xff0c;精选了UWA社区的热门话题&#xff0c;涵盖了UWA问答、社区帖子等技术知…