sheng的学习笔记-【中文】【吴恩达课后测验】Course 2 - 改善深层神经网络 - 第二周测验

课程2_第2周_测验题

目录:目录

第一题

1.当输入从第8个mini-batch的第7个的例子的时候,你会用哪种符号表示第3层的激活?

A. 【  】 a [ 3 ] { 8 } ( 7 ) a^{[3]\{8\}(7)} a[3]{8}(7)

B. 【  】 a [ 8 ] { 7 } ( 3 ) a^{[8]\{7\}(3)} a[8]{7}(3)

C. 【  】 a [ 8 ] { 3 } ( 7 ) a^{[8]\{3\}(7)} a[8]{3}(7)

D. 【  】 a [ 3 ] { 7 } ( 8 ) a^{[3]\{7\}(8)} a[3]{7}(8)

答案:

A.【 √ 】 a [ 3 ] { 8 } ( 7 ) a^{[3]\{8\}(7)} a[3]{8}(7)

第二题

2.关于mini-batch的说法哪个是正确的?

A. 【  】mini-batch迭代一次(计算1个mini-batch),要比批量梯度下降迭代一次快

B. 【  】用mini-batch训练完整个数据集一次,要比批量梯度下降训练完整个数据集一次快

C. 【  】在不同的mini-batch下,不需要显式地进行循环,就可以实现mini-batch梯度下降,从而使算法同时处理所有的数据(矢量化)

答案:

A.【 √ 】mini-batch迭代一次(计算1个mini-batch),要比批量梯度下降迭代一次快

第三题

3.为什么最好的mini-batch的大小通常不是1也不是m,而是介于两者之间?

A. 【  】如果mini-batch的大小是1,那么在你取得进展前,你需要遍历整个训练集

B. 【  】如果mini-batch的大小是m,就会变成批量梯度下降。在你取得进展前,你需要遍历整个训练集

C. 【  】如果mini-batch的大小是1,那么你将失去mini-batch将数据矢量化带来的的好处

D. 【  】如果mini-batch的大小是m,就会变成随机梯度下降,而这样做经常会比mini-batch慢

答案:

B.【 √ 】如果mini-batch的大小是m,就会变成批量梯度下降。在你取得进展前,你需要遍历整个训练集

C.【 √ 】如果mini-batch的大小是1,那么你将失去mini-batch将数据矢量化带来的的好处

第四题

4.如果你的模型的成本随着迭代次数的增加,绘制出来的图如下,那么:
在这里插入图片描述

A. 【  】如果你正在使用mini-batch梯度下降,那可能有问题;而如果你在使用批量梯度下降,那是合理的。

B. 【  】如果你正在使用mini-batch梯度下降,那看上去是合理的;而如果你在使用批量梯度下降,那可能有问题。

C. 【  】无论你在使用mini-batch还是批量梯度下降,看上去都是合理的。

D. 【  】无论你在使用mini-batch还是批量梯度下降,都可能有问题。

答案:

B.【 √ 】如果你正在使用mini-batch梯度下降,那看上去是合理的;而如果你在使用批量梯度下降,那可能有问题。

第五题

5.假设一月的前三天卡萨布兰卡的气温是一样的:

  • 一月第一天: θ 1 = 10 \theta_1 = 10 θ1=10
  • 一月第二天: θ 2 = 10 \theta_2 = 10 θ2=10

假设您使用 β = 0.5 \beta = 0.5 β=0.5的指数加权平均来跟踪温度: v 0 = 0 , v t = β v t − 1 + ( 1 − β ) θ t v_0=0,v_t=\beta v_{t-1}+(1-\beta)\theta_t v0=0,vt=βvt1+(1β)θt。如果 v 2 v_2 v2是在没有偏差修正的情况下计算第2天后的值,并且 v 2 c o r r e c t e d v_2^{corrected} v2corrected是您使用偏差修正计算的值。 这些下面的值是正确的是?

A. 【  】 v 2 = 10 , v 2 c o r r e c t e d = 10 v_2=10,v_2^{corrected}=10 v2=10,v2corrected=10

B. 【  】 v 2 = 10 , v 2 c o r r e c t e d = 7.5 v_2=10,v_2^{corrected}=7.5 v2=10,v2corrected=7.5

C. 【  】 v 2 = 7.5 , v 2 c o r r e c t e d = 7.5 v_2=7.5,v_2^{corrected}=7.5 v2=7.5,v2corrected=7.5

D. 【  】 v 2 = 7.5 , v 2 c o r r e c t e d = 10 v_2=7.5,v_2^{corrected}=10 v2=7.5,v2corrected=10

答案:

D.【 √ 】 v 2 = 7.5 , v 2 c o r r e c t e d = 10 v_2=7.5,v_2^{corrected}=10 v2=7.5,v2corrected=10

第六题

6.下面哪一个不是比较好的学习率衰减方法?

A. 【  】 α = 1 1 + 2 ∗ t α 0 \alpha = \frac{1}{1+2*t}\alpha_0 α=1+2t1α0

B. 【  】 α = 1 t α 0 \alpha=\frac{1}{\sqrt{t}}\alpha_0 α=t 1α0

C. 【  】 α = 0.9 5 t α 0 \alpha=0.95^t\alpha_0 α=0.95tα0

D. 【  】 α = e t α 0 \alpha=e^t\alpha_0 α=etα0

答案:

D.【 √ 】 α = e t α 0 \alpha=e^t\alpha_0 α=etα0

第七题

7.您在伦敦温度数据集上使用指数加权平均, 使用以下公式来追踪温度: v t = β v t − 1 + ( 1 − β ) θ t v_t=\beta v_{t-1}+(1-\beta)\theta_t vt=βvt1+(1β)θt。下图中红线使用的是 β = 0.9 \beta=0.9 β=0.9来计算的。当你改变 β \beta β时,你的红色曲线会怎样变化?(选出所有正确项)
在这里插入图片描述

A. 【  】减小 β \beta β,红色线会略微右移

B. 【  】增加 β \beta β,红色线会略微右移

C. 【  】减小 β \beta β,红线会更加震荡

D. 【  】增加 β \beta β,红线会更加震荡

答案:

B.【 √ 】增加 β \beta β,红色线会略微右移

C.【 √ 】减小 β \beta β,红线会更加震荡

第八题

8.下图中的曲线是由:梯度下降,动量梯度下降( β = 0.5 \beta=0.5 β=0.5)和动量梯度下降( β = 0.9 \beta=0.9 β=0.9)。哪条曲线对应哪种算法?
在这里插入图片描述

A. 【  】(1)是梯度下降;(2)是动量梯度下降( β = 0.9 \beta=0.9 β=0.9);(3)是动量梯度下降( β = 0.5 \beta=0.5 β=0.5

B. 【  】(1)是梯度下降;(2)是动量梯度下降( β = 0.5 \beta=0.5 β=0.5);(3)是动量梯度下降( β = 0.9 \beta=0.9 β=0.9

C. 【  】(1)是动量梯度下降( β = 0.5 \beta=0.5 β=0.5);(2)是动量梯度下降( β = 0.9 \beta=0.9 β=0.9);(3)是梯度下降

D. 【  】(1)是动量梯度下降( β = 0.5 \beta=0.5 β=0.5);(2)是梯度下降;(3)是动量梯度下降($\beta=0.9
$)

答案:

B.【 √ 】(1)是梯度下降;(2)是动量梯度下降( β = 0.5 \beta=0.5 β=0.5);(3)是动量梯度下降( β = 0.9 \beta=0.9 β=0.9

第九题

9.假设在一个深度学习网络中,批量梯度下降花费了大量时间时来找到一组参数值,使成本函数 ( J ( W [ 1 ] , b [ 1 ] , … , W [ L ] , b [ L ] ) (J(W^{[1]},b^{[1]},…,W^{[L]},b^{[L]}) J(W[1],b[1],,W[L],b[L])小。以下哪些方法可以帮助找到 J J J值较小的参数值?

A. 【  】令所有权重值初始化为0

B. 【  】尝试调整学习率

C. 【  】尝试mini-batch梯度下降

D. 【  】尝试对权重进行更好的随机初始化

E. 【  】尝试使用 Adam 算法

答案:

B.【 √ 】尝试调整学习率

C.【 √ 】尝试mini-batch梯度下降

D.【 √ 】尝试对权重进行更好的随机初始化

E.【 √ 】尝试使用 Adam 算法

第十题

10.关于Adam算法,下列哪一个陈述是错误的?

A. 【  】Adam结合了Rmsprop和动量的优点

B. 【  】Adam中的学习率超参数 α \alpha α通常需要调整

C. 【  】我们经常使用超参数的“默认”值 β 1 = 0 , 9 , β 2 = 0.999 , ϵ = 1 0 − 8 \beta_1=0,9,\beta_2=0.999,\epsilon=10^{-8} β1=0,9,β2=0.999,ϵ=108

D. 【  】Adam应该用于批梯度计算,而不是用于mini-batch

答案:

D.【 √ 】Adam应该用于批梯度计算,而不是用于mini-batch

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/125115.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023/10/4 QT实现TCP服务器客户端搭建

服务器端&#xff1a; 头文件 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTcpServer> #include <QTcpSocket> #include <QList> #include <QMessageBox> #include <QDebug>QT_BEGIN_NAMESPACE namespace Ui { cla…

Flutter AI五子棋

前言 在上一篇文章中&#xff0c;讲解了如何实现双人在本地对战的五子棋&#xff0c;但是只有一个人的时候就不太好玩&#xff0c;同时博主也没有把五子棋相关的文章写过瘾。那么这篇文章&#xff0c;我们来实现一个功能更加丰富的五子棋吧&#xff01;在设计五子棋的算法方面&…

竞赛 机器视觉人体跌倒检测系统 - opencv python

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 机器视觉人体跌倒检测系统 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&…

JVM篇---第三篇

系列文章目录 文章目录 系列文章目录一、什么是Java虚拟机?为什么Java被称作是“平台无关的编程语言”?二、Java内存结构三、说说对象分配规则一、什么是Java虚拟机?为什么Java被称作是“平台无关的编程语言”? Java虚拟机是一个可以执行Java字节码的虚拟机进程。Java源文…

C#捕捉全局异常

1.运行图片 2.源码 using System; using System.Collections.Generic; using System.Linq; using System.Threading.Tasks; using System.Windows.Forms;namespace 捕捉全局异常 {internal static class Program{/// <summary>/// 应用程序的主入口点。/// </summary…

【算法|动态规划No.9】leetcodeLCR 091. 粉刷房子

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 &#x1f354;本专栏旨在提高自己算法能力的同时&#xff0c;记录一下自己的学习过程&#xff0c;希望…

MongoDB数据库网站网页实例-编程语言Python+Django

程序示例精选 PythonDjangoMongoDB数据库网站网页实例 如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01; 前言 这篇博客针对《PythonDjangoMongoDB数据库网站网页实例》编写代码&#xff0c;代码整洁&#xff0c;…

波奇学C++:AVL树

AVL解决二叉搜索树退化成链表&#xff0c;保证左右子树高度不差过1&#xff0c;尽可能接近满二叉树 AVL树的性质&#xff1a;高度差&#xff08;平衡因子&#xff09;的绝对值不超过1&#xff08;-1/0/1&#xff09; 平衡因子&#xff1a;右子树高度-左子树高度 用平衡因子控…

【计算机网络】HTTPS协议详解

文章目录 一、HTTPS协议 介绍 1、1 HTTP协议不安全的体现 1、2 什么是 HTTPS协议 二、加密的一些概念 2、1 怎么理解加密 2、2 为什么要加密 2、3 常见的加密方式 2、2、1 对称加密 2、2、2 非对称加密 三、HTTPS协议探究加密过程 3、1 只使用对称加密 3、2 只是用非对称加密 3…

javaee spring整合mybatis

案例一 包含dao层 创建maven webapp项目 maven仓库需要改为阿里云 引入依赖 <?xml version"1.0" encoding"UTF-8"?><project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-inst…

HarmonyOS/OpenHarmony原生应用-ArkTS万能卡片组件Badge

可以附加在单个组件上用于信息标记的容器组件。该组件从API Version 7开始支持。 支持单个子组件。子组件类型&#xff1a;系统组件和自定义组件&#xff0c;支持渲染控制类型&#xff08;if/else、ForEach和LazyForEach&#xff09;。 一、接口 方法1&#xff1a; Badge(value…

【MySql】Mysql之备份与恢复

目录 一、mysql日志概述 1、日志类型与作用 2、日志配置文件 3、日志配置文件的查询 二、备份的类型❤ 1、物理备份 1.1 冷备份 1.2 热备份 1.3 温备份 2、逻辑备份❤ 2.1 完全备份 2.2 差异备份 2.3 增量备份 2.5 如何选择逻辑备份策略 3、常见的备份方法 3…