坦克世界WOT知识图谱三部曲之爬虫篇

文章目录

  • 关于坦克世界
  • 1. 爬虫任务
  • 2. 获取坦克列表
  • 3. 获取坦克具体信息
  • 结束语

关于坦克世界

  《坦克世界》(World of Tanks, WOT)是我在本科期间玩过的一款战争网游,由Wargaming公司研发。2010年10月30日在俄罗斯首发,2011年4月12日在北美和欧洲推出,2011年3月15日在中国由空中网代理推出(2020年,国服由360代理)。游戏背景设定在二战时期,玩家会扮演1930到1960年代的战车进行对战,要求战略和合作性,游戏中的战车根据历史高度还原。

  坦克世界官网:https://wotgame.cn/
  坦克世界坦克百科:https://wotgame.cn/zh-cn/tankopedia/#wot&w_m=tanks

在这里插入图片描述

1. 爬虫任务

在这里插入图片描述
  当前的WOT有五种坦克类型,11个系别。我们要构建一个关于坦克百科的知识图谱,接下来就要通过爬虫来获取所有坦克的详细信息,比如坦克的等级、火力、机动性、防护能力、侦察能力等等。以当前的八级霸主中国重型坦克BZ-176为例,坦克的详细信息如下:

在这里插入图片描述
在这里插入图片描述

2. 获取坦克列表

在这里插入图片描述
  常规操作,F12+F5查看一下页面信息,定位到坦克列表的具体请求:

在这里插入图片描述
  是一个POST请求,返回的是一个JSON格式的数据,包含了该类型坦克的一些基本信息:

在这里插入图片描述
  POST请求参数如下:

在这里插入图片描述

  特别说明一下:构建该请求header时,Content-Length参数是必须的。

  代码实现:

# -*- coding: utf-8 -*-
# Author  : xiayouran
# Email   : youran.xia@foxmail.com
# Datetime: 2023/9/29 22:43
# Filename: spider_wot.py
import os
import time
import json
import requestsclass WOTSpider:def __init__(self):self.base_headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) ''Chrome/117.0.0.0 Safari/537.36','Accept-Encoding': 'gzip, deflate, br','Accept-Language': 'zh-CN,zh;q=0.9',}self.post_headers = {'Accept': 'application/json, text/javascript, */*; q=0.01','Content-Length': '135','Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'}self.from_data = {'filter[nation]': '','filter[type]': 'lightTank','filter[role]': '','filter[tier]': '','filter[language]': 'zh-cn','filter[premium]': '0,1'}self.tank_list_url = 'https://wotgame.cn/wotpbe/tankopedia/api/vehicles/by_filters/'self.tank_label = ['lightTank', 'mediumTank', 'heavyTank', 'AT-SPG', 'SPG']self.tanks = {}def parser_tanklist_html(self, html_text):json_data = json.loads(html_text)for data in json_data['data']['data']:self.tanks[data[0] + '_' + data[4]] = {'tank_nation': data[0],'tank_type': data[1],'tank_rank': data[3],'tank_name': data[4],'tank_name_s': data[5],'tank_url': data[6],'tank_id': data[7]}def run(self):for label in self.tank_label:self.from_data['filter[type]'] = labelhtml_text = self.get_html(self.tank_list_url, method='POST', from_data=self.from_data)if not html_text:print('[{}] error'.format(label))continueself.parser_tanklist_html(html_text)time.sleep(3)self.save_json(os.path.join(self.data_path, 'tank_list.json'), self.tanks)if __name__ == '__main__':tank_spider = WOTSpider()tank_spider.run()

  上述代码只实现了一些重要的函数及变量声明,完整的代码可以从github上拉取:WOT

3. 获取坦克具体信息

  坦克具体信息的页面就是一个纯HTML页面了,一个GET请求就可以获得。当然啦,具体怎么分析的就不细说了,对爬虫技术感兴趣的同学们可以找找资料,这里就只说一下抓取流程。
  先分析GET请求:https://wotgame.cn/zh-cn/tankopedia/60209-Ch47_BZ_176/,可以分成三部分:
  Part 1:基本的url请求:https://wotgame.cn/zh-cn/tankopedia
  Part 2:坦克的idBZ-176坦克的id60209,每个坦克都是唯一的,这个参数通过上一个步骤的POST请求可以获取到;
  Part 3:坦克的名称:Ch47_BZ_176,这个参数也可以通过上一个步骤的POST请求可以获取到。
  这样就可以为每个坦克构造一个对应的url了,只需解析该url对应的界面即可。解析的时候我分成了两部分,先对坦克的基本信息进行解析,比如坦克系别、等级及价格等等,由BeautifulSoup库实现,坦克的具体信息,比如火力、机动、防护及侦察能力,这些信息是由JavaScript代码动态请求得到的,这里为了简便没有分析具体的js代码,而是先使用selenium库进行网页渲染,然后再使用BeautifulSoup库进行解析。这里不再细说,下面给出页面解析的代码:

# -*- coding: utf-8 -*-
# Author  : xiayouran
# Email   : youran.xia@foxmail.com
# Datetime: 2023/9/29 22:43
# Filename: spider_wot.py
import requests
from tqdm import tqdm
from bs4 import BeautifulSoup, Tag
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWaitclass WOTSpider:def __init__(self):passdef is_span_with_value(self, driver):try:element = driver.find_element(By.XPATH, "//span[@data-bind=\"text: ttc().getFormattedBestParam('maxHealth', 'gt')\"]")data = element.text.strip()if data:return Trueexcept:return Falsedef get_html_driver(self, url):self.driver.get(url)self.wait.until(self.is_span_with_value)page_source = self.driver.page_sourcereturn page_sourcedef parser_tankinfo_html(self, html_text):tank_info = copy.deepcopy(self.tank_info)soup = BeautifulSoup(html_text, 'lxml')# tank_name = soup.find(name='h1', attrs={'class': 'garage_title garage_title__inline js-tank-title'}).strip()tank_statistic = soup.find_all(name='div', attrs={'class': 'tank-statistic_item'})for ts in tank_statistic:ts_text = [t for t in ts.get_text().split('\n') if t]if len(ts_text) == 5:tank_info['价格'] = {'银币': ts_text[-3],'经验': ts_text[-1]}else:tank_info[ts_text[0]] = ts_text[-1]tank_property1 = soup.find(name='p', attrs='garage_objection')tank_property2 = soup.find(name='p', attrs='garage_objection garage_objection__collector')if tank_property1:tank_info['性质'] = tank_property1.textelif tank_property2:tank_info['性质'] = tank_property2.textelse:tank_info['性质'] = '银币坦克'tank_desc_tag = soup.find(name='p', attrs='tank-description_notification')if tank_desc_tag:tank_info['历史背景'] = tank_desc_tag.texttank_parameter = soup.find_all(name='div', attrs={'class': 'specification_block'})for tp_tag in tank_parameter:param_text = tp_tag.find_next(name='h2', attrs={'class': 'specification_title specification_title__sub'}).get_text()# spec_param = tp_tag.find_all_next(name='div', attrs={'class': 'specification_item'})spec_param = [tag for tag in tp_tag.contents if isinstance(tag, Tag) and tag.attrs['class'] == ['specification_item']]spec_info = {}for tp in spec_param:tp_text = [t for t in tp.get_text().replace(' ', '').split('\n') if t]if not tp_text or not tp_text[0][0].isdigit():continuespec_info[tp_text[-1]] = ' '.join(tp_text[:-1])tank_info[param_text] = spec_inforeturn tank_infodef run(self):file_list = [os.path.basename(file)[:-5] for file in glob.glob(os.path.join(self.data_path, '*.json'))]for k, item in tqdm(self.tanks.items(), desc='Crawling'):file_name = k.replace('"', '').replace('“', '').replace('”', '').replace('/', '-').replace('\\', '').replace('*', '+')if file_name in file_list:continuetank_url = self.tank_url + str(item['tank_id']) + '-' + item['tank_url']html_text = self.get_html_driver(tank_url)# html_text = self.get_html(tank_url, method='GET')tank_info = self.parser_tankinfo_html(html_text)self.tanks[k].update(tank_info)self.save_json(os.path.join(self.data_path, '{}.json'.format(file_name)), self.tanks[k])time.sleep(1.5)self.save_json(os.path.join(self.data_path, 'tank_list_detail.json'), self.tanks)if __name__ == '__main__':tank_spider = WOTSpider()tank_spider.run()

  大约半个小时即可获取全部的坦克信息,如下:

在这里插入图片描述

  Selenium 库依赖chromedriver,需要根据自己的Chrome浏览器版本下载合适的版本,chromedriver的官方下载地址为:https://chromedriver.chromium.org/downloads/version-selection

结束语

  本篇的完整代码及爬取的结果已经同步到仓库中,感兴趣的话可以拉取一下,下一篇文章就基于当前获取到的坦克信息来构造一个关于坦克百科的知识图谱。

开源代码仓库


  如果喜欢的话记得给我的GitHub仓库WOT点个Star哦!ヾ(≧∇≦*)ヾ


  公众号已开通:夏小悠,关注以获取更多关于Python文章、AI领域最新技术、LLM大模型相关论文及内部PPT等资料^_^

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/125398.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【算法】排序——归并排序和计数排序

主页点击直达:个人主页 我的小仓库:代码仓库 C语言偷着笑:C语言专栏 数据结构挨打小记:初阶数据结构专栏 Linux被操作记:Linux专栏 LeetCode刷题掉发记:LeetCode刷题 算法头疼记:算法专栏…

分布式操作系统

分布式操作系统属于多机操作系统,能够统一一套计算机集群,相比单机系统,分布式操作系统在管理计算机集群方面要简单很多。各种分布式的基础功能,都集中到分布式操作系统来实现,而不是单机系统的应用软件来实现&#xf…

如何使用 Dijkstra 算法找到从源到所有顶点的最短路径--附C++/Java源码

给定一个图和图中的源顶点,找到从源到给定图中所有顶点的最短路径。 例子: 输入: src = 0,图形如下图所示。 输出: 0 4 12 19 21 11 9 8 14解释:从 0 到 1 的距离 = 4。 从 0 到 2 的最小距离 = 12。0->1->2 从 0 到 3 的最小距离 = 19。0 ->1-

目标检测算法改进系列之Backbone替换为InceptionNeXt

InceptionNeXt 受 Vision Transformer 长距离依赖关系建模能力的启发,最近一些视觉模型开始上大 Kernel 的 Depth-Wise 卷积,比如一篇出色的工作 ConvNeXt。虽然这种 Depth-Wise 的算子只消耗少量的 FLOPs,但由于高昂的内存访问成本 (memory…

位置编码器

目录 1、位置编码器的作用 2、代码演示 (1)、使用unsqueeze扩展维度 (2)、使用squeeze降维 (3)、显示张量维度 (4)、随机失活张量中的数值 3、定义位置编码器类,我…

6.Tensors For Beginners-What are Convector

Covectors (协向量) What‘s a covector Covectors are “basically” Row Vectors 在一定程度上,可认为 协向量 基本上就像 行向量。 但不能简单地认为 这就是列向量进行转置! 行向量 和 列向量 是根本不同类型的对象。 …

【JavaEE】多线程(五)- 基础知识完结篇

多线程(五) 文章目录 多线程(五)volatile关键字保证内存可见性JMM(Java Memory Model) 不保证原子性 wait 和 notifywait()notify()线程饿死 上文我们主要讲了 synchronized以及线程安全的一些话题 可重入…

最短路径专题6 最短路径-多路径

题目: 样例: 输入 4 5 0 2 0 1 2 0 2 5 0 3 1 1 2 1 3 2 2 输出 2 0->1->2 0->3->2 思路: 根据题意,最短路模板还是少不了的, 我们要添加的是, 记录各个结点有多少个上一个结点走动得来的…

C++设计模式-抽象工厂(Abstract Factory)

目录 C设计模式-抽象工厂(Abstract Factory) 一、意图 二、适用性 三、结构 四、参与者 五、代码 C设计模式-抽象工厂(Abstract Factory) 一、意图 提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们…

sheng的学习笔记-【中英】【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第四周测验

课程1_第4周_测验题 目录:目录 第一题 1.在我们的前向传播和后向传播实现中使用的 “缓存” 是什么? A. 【  】它用于在训练期间缓存成本函数的中间值。 B. 【  】我们用它将在正向传播过程中计算的变量传递到相应的反向传播步骤。它包含了反向传…

【计算机组成原理】考研真题攻克与重点知识点剖析 - 第 2 篇:数据的表示和运算

前言 本文基础知识部分来自于b站:分享笔记的好人儿的思维导图与王道考研课程,感谢大佬的开源精神,习题来自老师划的重点以及考研真题。此前我尝试了完全使用Python或是结合大语言模型对考研真题进行数据清洗与可视化分析,本人技术…

目标检测算法改进系列之Backbone替换为NextViT

NextViT介绍 由于复杂的注意力机制和模型设计,大多数现有的视觉Transformer(ViTs)在现实的工业部署场景中不能像卷积神经网络(CNNs)那样高效地执行,例如TensorRT 和 CoreML。这带来了一个明显的挑战&#…