目标检测算法改进系列之Backbone替换为InceptionNeXt

InceptionNeXt

受 Vision Transformer 长距离依赖关系建模能力的启发,最近一些视觉模型开始上大 Kernel 的 Depth-Wise 卷积,比如一篇出色的工作 ConvNeXt。虽然这种 Depth-Wise 的算子只消耗少量的 FLOPs,但由于高昂的内存访问成本 (memory access cost),在高性能的计算设备上会损害模型的效率。举例来说,ConvNeXt-T 和 ResNet-50 的 FLOPs 相似,但是在 A100 GPU 上进行全精度训练时,只能达到 60% 的吞吐量。

原文地址:InceptionNeXt: When Inception Meets ConvNeXt

针对这个问题,一种提高速度的方法是减小 Kernel 的大小,但是会导致显著的性能下降。目前还不清楚如何在保持基于大 Kernel 的 CNN 模型性能的同时加速。

为了解决这个问题,受 Inception 的启发,本文作者提出将大 Kernel 的 Depth-Wise 卷积沿 channel 维度分解为四个并行分支,即小的矩形卷积核:两个正交的带状卷积核和一个恒等映射。通过这种新的 Inception Depth-Wise 卷积,作者构建了一系列网络,称为 IncepitonNeXt,这些网络不仅具有高吞吐量,而且还保持了具有竞争力的性能。例如,InceptionNeXt-T 的训练吞吐量比 ConvNeXt-T 高1.6倍,在 ImageNet-1K 上的 top-1 精度提高了 0.2%。
论文目标不是扩大卷积核。相反是以效率为目标,在保持相当的性能的前提下,以简单和速度友好的方式分解大卷积核。

InceptionNeXt主要核心结构

InceptionNeXt代码实现

"""
InceptionNeXt implementation, paper: https://arxiv.org/abs/2303.16900
Some code is borrowed from timm: https://github.com/huggingface/pytorch-image-models
"""from functools import partialimport torch
import torch.nn as nn
import numpy as npfrom timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models import checkpoint_seq, to_2tuple
from timm.models.layers import trunc_normal_, DropPath
from timm.models.registry import register_model__all__ = ['inceptionnext_tiny', 'inceptionnext_small', 'inceptionnext_base', 'inceptionnext_base_384']class InceptionDWConv2d(nn.Module):""" Inception depthweise convolution"""def __init__(self, in_channels, square_kernel_size=3, band_kernel_size=11, branch_ratio=0.125):super().__init__()gc = int(in_channels * branch_ratio) # channel numbers of a convolution branchself.dwconv_hw = nn.Conv2d(gc, gc, square_kernel_size, padding=square_kernel_size//2, groups=gc)self.dwconv_w = nn.Conv2d(gc, gc, kernel_size=(1, band_kernel_size), padding=(0, band_kernel_size//2), groups=gc)self.dwconv_h = nn.Conv2d(gc, gc, kernel_size=(band_kernel_size, 1), padding=(band_kernel_size//2, 0), groups=gc)self.split_indexes = (in_channels - 3 * gc, gc, gc, gc)def forward(self, x):x_id, x_hw, x_w, x_h = torch.split(x, self.split_indexes, dim=1)return torch.cat((x_id, self.dwconv_hw(x_hw), self.dwconv_w(x_w), self.dwconv_h(x_h)), dim=1,)class ConvMlp(nn.Module):""" MLP using 1x1 convs that keeps spatial dimscopied from timm: https://github.com/huggingface/pytorch-image-models/blob/v0.6.11/timm/models/layers/mlp.py"""def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU,norm_layer=None, bias=True, drop=0.):super().__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featuresbias = to_2tuple(bias)self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=bias[0])self.norm = norm_layer(hidden_features) if norm_layer else nn.Identity()self.act = act_layer()self.drop = nn.Dropout(drop)self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=bias[1])def forward(self, x):x = self.fc1(x)x = self.norm(x)x = self.act(x)x = self.drop(x)x = self.fc2(x)return xclass MlpHead(nn.Module):""" MLP classification head"""def __init__(self, dim, num_classes=1000, mlp_ratio=3, act_layer=nn.GELU,norm_layer=partial(nn.LayerNorm, eps=1e-6), drop=0., bias=True):super().__init__()hidden_features = int(mlp_ratio * dim)self.fc1 = nn.Linear(dim, hidden_features, bias=bias)self.act = act_layer()self.norm = norm_layer(hidden_features)self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias)self.drop = nn.Dropout(drop)def forward(self, x):x = x.mean((2, 3)) # global average poolingx = self.fc1(x)x = self.act(x)x = self.norm(x)x = self.drop(x)x = self.fc2(x)return xclass MetaNeXtBlock(nn.Module):""" MetaNeXtBlock BlockArgs:dim (int): Number of input channels.drop_path (float): Stochastic depth rate. Default: 0.0ls_init_value (float): Init value for Layer Scale. Default: 1e-6."""def __init__(self,dim,token_mixer=InceptionDWConv2d,norm_layer=nn.BatchNorm2d,mlp_layer=ConvMlp,mlp_ratio=4,act_layer=nn.GELU,ls_init_value=1e-6,drop_path=0.,):super().__init__()self.token_mixer = token_mixer(dim)self.norm = norm_layer(dim)self.mlp = mlp_layer(dim, int(mlp_ratio * dim), act_layer=act_layer)self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value else Noneself.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()def forward(self, x):shortcut = xx = self.token_mixer(x)x = self.norm(x)x = self.mlp(x)if self.gamma is not None:x = x.mul(self.gamma.reshape(1, -1, 1, 1))x = self.drop_path(x) + shortcutreturn xclass MetaNeXtStage(nn.Module):def __init__(self,in_chs,out_chs,ds_stride=2,depth=2,drop_path_rates=None,ls_init_value=1.0,act_layer=nn.GELU,norm_layer=None,mlp_ratio=4,):super().__init__()self.grad_checkpointing = Falseif ds_stride > 1:self.downsample = nn.Sequential(norm_layer(in_chs),nn.Conv2d(in_chs, out_chs, kernel_size=ds_stride, stride=ds_stride),)else:self.downsample = nn.Identity()drop_path_rates = drop_path_rates or [0.] * depthstage_blocks = []for i in range(depth):stage_blocks.append(MetaNeXtBlock(dim=out_chs,drop_path=drop_path_rates[i],ls_init_value=ls_init_value,act_layer=act_layer,norm_layer=norm_layer,mlp_ratio=mlp_ratio,))in_chs = out_chsself.blocks = nn.Sequential(*stage_blocks)def forward(self, x):x = self.downsample(x)if self.grad_checkpointing and not torch.jit.is_scripting():x = checkpoint_seq(self.blocks, x)else:x = self.blocks(x)return xclass MetaNeXt(nn.Module):r""" MetaNeXtA PyTorch impl of : `InceptionNeXt: When Inception Meets ConvNeXt`  - https://arxiv.org/pdf/2203.xxxxx.pdfArgs:in_chans (int): Number of input image channels. Default: 3num_classes (int): Number of classes for classification head. Default: 1000depths (tuple(int)): Number of blocks at each stage. Default: (3, 3, 9, 3)dims (tuple(int)): Feature dimension at each stage. Default: (96, 192, 384, 768)token_mixers: Token mixer function. Default: nn.Identitynorm_layer: Normalziation layer. Default: nn.BatchNorm2dact_layer: Activation function for MLP. Default: nn.GELUmlp_ratios (int or tuple(int)): MLP ratios. Default: (4, 4, 4, 3)head_fn: classifier headdrop_rate (float): Head dropout ratedrop_path_rate (float): Stochastic depth rate. Default: 0.ls_init_value (float): Init value for Layer Scale. Default: 1e-6."""def __init__(self,in_chans=3,num_classes=1000,depths=(3, 3, 9, 3),dims=(96, 192, 384, 768),token_mixers=nn.Identity,norm_layer=nn.BatchNorm2d,act_layer=nn.GELU,mlp_ratios=(4, 4, 4, 3),head_fn=MlpHead,drop_rate=0.,drop_path_rate=0.,ls_init_value=1e-6,**kwargs,):super().__init__()num_stage = len(depths)if not isinstance(token_mixers, (list, tuple)):token_mixers = [token_mixers] * num_stageif not isinstance(mlp_ratios, (list, tuple)):mlp_ratios = [mlp_ratios] * num_stageself.num_classes = num_classesself.drop_rate = drop_rateself.stem = nn.Sequential(nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),norm_layer(dims[0]))self.stages = nn.Sequential()dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]stages = []prev_chs = dims[0]# feature resolution stages, each consisting of multiple residual blocksfor i in range(num_stage):out_chs = dims[i]stages.append(MetaNeXtStage(prev_chs,out_chs,ds_stride=2 if i > 0 else 1, depth=depths[i],drop_path_rates=dp_rates[i],ls_init_value=ls_init_value,act_layer=act_layer,norm_layer=norm_layer,mlp_ratio=mlp_ratios[i],))prev_chs = out_chsself.stages = nn.Sequential(*stages)self.num_features = prev_chsself.apply(self._init_weights)self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]@torch.jit.ignoredef set_grad_checkpointing(self, enable=True):for s in self.stages:s.grad_checkpointing = enable@torch.jit.ignoredef no_weight_decay(self):return {'norm'}def forward(self, x):input_size = x.size(2)scale = [4, 8, 16, 32]features = [None, None, None, None]x = self.stem(x)features[scale.index(input_size // x.size(2))] = xfor idx, layer in enumerate(self.stages):x = layer(x)if input_size // x.size(2) in scale:features[scale.index(input_size // x.size(2))] = xreturn featuresdef _init_weights(self, m):if isinstance(m, (nn.Conv2d, nn.Linear)):trunc_normal_(m.weight, std=.02)if m.bias is not None:nn.init.constant_(m.bias, 0)def _cfg(url='', **kwargs):return {'url': url,'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),'crop_pct': 0.875, 'interpolation': 'bicubic','mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,'first_conv': 'stem.0', 'classifier': 'head.fc',**kwargs}def update_weight(model_dict, weight_dict):idx, temp_dict = 0, {}for k, v in weight_dict.items():if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):temp_dict[k] = vidx += 1model_dict.update(temp_dict)print(f'loading weights... {idx}/{len(model_dict)} items')return model_dictdefault_cfgs = dict(inceptionnext_tiny=_cfg(url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_tiny.pth',),inceptionnext_small=_cfg(url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_small.pth',),inceptionnext_base=_cfg(url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_base.pth',),inceptionnext_base_384=_cfg(url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_base_384.pth',input_size=(3, 384, 384), crop_pct=1.0,),
)def inceptionnext_tiny(pretrained=False, **kwargs):model = MetaNeXt(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768), token_mixers=InceptionDWConv2d,**kwargs)model.default_cfg = default_cfgs['inceptionnext_tiny']if pretrained:state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)model.load_state_dict(state_dict)return modeldef inceptionnext_small(pretrained=False, **kwargs):model = MetaNeXt(depths=(3, 3, 27, 3), dims=(96, 192, 384, 768), token_mixers=InceptionDWConv2d,**kwargs)model.default_cfg = default_cfgs['inceptionnext_small']if pretrained:state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)model.load_state_dict(state_dict)return modeldef inceptionnext_base(pretrained=False, **kwargs):model = MetaNeXt(depths=(3, 3, 27, 3), dims=(128, 256, 512, 1024), token_mixers=InceptionDWConv2d,**kwargs)model.default_cfg = default_cfgs['inceptionnext_base']if pretrained:state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)model.load_state_dict(state_dict)return modeldef inceptionnext_base_384(pretrained=False, **kwargs):model = MetaNeXt(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], mlp_ratios=[4, 4, 4, 3],token_mixers=InceptionDWConv2d,**kwargs)model.default_cfg = default_cfgs['inceptionnext_base_384']if pretrained:state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)model.load_state_dict(state_dict)return modelif __name__ == '__main__':model = inceptionnext_tiny(pretrained=False)inputs = torch.randn((1, 3, 640, 640))for i in model(inputs):print(i.size())

Backbone替换

yolo.py修改

def parse_model函数

def parse_model(d, ch):  # model_dict, input_channels(3)# Parse a YOLOv5 model.yaml dictionaryLOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')if act:Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()LOGGER.info(f"{colorstr('activation:')} {act}")  # printna = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchorsno = na * (nc + 5)  # number of outputs = anchors * (classes + 5)is_backbone = Falselayers, save, c2 = [], [], ch[-1]  # layers, savelist, ch outfor i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, argstry:t = mm = eval(m) if isinstance(m, str) else m  # eval stringsexcept:passfor j, a in enumerate(args):with contextlib.suppress(NameError):try:args[j] = eval(a) if isinstance(a, str) else a  # eval stringsexcept:args[j] = an = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gainif m in {Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:c1, c2 = ch[f], args[0]if c2 != no:  # if not outputc2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]]if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:args.insert(2, n)  # number of repeatsn = 1elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)# TODO: channel, gw, gdelif m in {Detect, Segment}:args.append([ch[x] for x in f])if isinstance(args[1], int):  # number of anchorsargs[1] = [list(range(args[1] * 2))] * len(f)if m is Segment:args[3] = make_divisible(args[3] * gw, 8)elif m is Contract:c2 = ch[f] * args[0] ** 2elif m is Expand:c2 = ch[f] // args[0] ** 2elif isinstance(m, str):t = mm = timm.create_model(m, pretrained=args[0], features_only=True)c2 = m.feature_info.channels()elif m in {inceptionnext_tiny, inceptionnext_small}: #可添加更多Backbonem = m(*args)c2 = m.channelelse:c2 = ch[f]if isinstance(c2, list):is_backbone = Truem_ = mm_.backbone = Trueelse:m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # modulet = str(m)[8:-2].replace('__main__.', '')  # module typenp = sum(x.numel() for x in m_.parameters())  # number paramsm_.i, m_.f, m_.type, m_.np = i + 4 if is_backbone else i, f, t, np  # attach index, 'from' index, type, number paramsLOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # printsave.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelistlayers.append(m_)if i == 0:ch = []if isinstance(c2, list):ch.extend(c2)for _ in range(5 - len(ch)):ch.insert(0, 0)else:ch.append(c2)return nn.Sequential(*layers), sorted(save)

def _forward_once函数

def _forward_once(self, x, profile=False, visualize=False):y, dt = [], []  # outputsfor m in self.model:if m.f != -1:  # if not from previous layerx = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layersif profile:self._profile_one_layer(m, x, dt)if hasattr(m, 'backbone'):x = m(x)for _ in range(5 - len(x)):x.insert(0, None)for i_idx, i in enumerate(x):if i_idx in self.save:y.append(i)else:y.append(None)x = x[-1]else:x = m(x)  # runy.append(x if m.i in self.save else None)  # save outputif visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)return x

创建.yaml配置文件

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# 0-P1/2
# 1-P2/4
# 2-P3/8
# 3-P4/16
# 4-P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, inceptionnext_tiny, [False]], # 4[-1, 1, SPPF, [1024, 5]],  # 5]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]], # 6[-1, 1, nn.Upsample, [None, 2, 'nearest']], # 7[[-1, 3], 1, Concat, [1]],  # cat backbone P4 8[-1, 3, C3, [512, False]],  # 9[-1, 1, Conv, [256, 1, 1]], # 10[-1, 1, nn.Upsample, [None, 2, 'nearest']], # 11[[-1, 2], 1, Concat, [1]],  # cat backbone P3 12[-1, 3, C3, [256, False]],  # 13 (P3/8-small)[-1, 1, Conv, [256, 3, 2]], # 14[[-1, 10], 1, Concat, [1]],  # cat head P4 15[-1, 3, C3, [512, False]],  # 16 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]], # 17[[-1, 5], 1, Concat, [1]],  # cat head P5 18[-1, 3, C3, [1024, False]],  # 19 (P5/32-large)[[13, 16, 19], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/125391.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

位置编码器

目录 1、位置编码器的作用 2、代码演示 &#xff08;1&#xff09;、使用unsqueeze扩展维度 &#xff08;2&#xff09;、使用squeeze降维 &#xff08;3&#xff09;、显示张量维度 &#xff08;4&#xff09;、随机失活张量中的数值 3、定义位置编码器类&#xff0c;我…

6.Tensors For Beginners-What are Convector

Covectors &#xff08;协向量&#xff09; What‘s a covector Covectors are “basically” Row Vectors 在一定程度上&#xff0c;可认为 协向量 基本上就像 行向量。 但不能简单地认为 这就是列向量进行转置&#xff01; 行向量 和 列向量 是根本不同类型的对象。 …

【JavaEE】多线程(五)- 基础知识完结篇

多线程&#xff08;五&#xff09; 文章目录 多线程&#xff08;五&#xff09;volatile关键字保证内存可见性JMM&#xff08;Java Memory Model&#xff09; 不保证原子性 wait 和 notifywait()notify()线程饿死 上文我们主要讲了 synchronized以及线程安全的一些话题 可重入…

最短路径专题6 最短路径-多路径

题目&#xff1a; 样例&#xff1a; 输入 4 5 0 2 0 1 2 0 2 5 0 3 1 1 2 1 3 2 2 输出 2 0->1->2 0->3->2 思路&#xff1a; 根据题意&#xff0c;最短路模板还是少不了的&#xff0c; 我们要添加的是&#xff0c; 记录各个结点有多少个上一个结点走动得来的…

C++设计模式-抽象工厂(Abstract Factory)

目录 C设计模式-抽象工厂&#xff08;Abstract Factory&#xff09; 一、意图 二、适用性 三、结构 四、参与者 五、代码 C设计模式-抽象工厂&#xff08;Abstract Factory&#xff09; 一、意图 提供一个创建一系列相关或相互依赖对象的接口&#xff0c;而无需指定它们…

sheng的学习笔记-【中英】【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第四周测验

课程1_第4周_测验题 目录&#xff1a;目录 第一题 1.在我们的前向传播和后向传播实现中使用的 “缓存” 是什么&#xff1f; A. 【  】它用于在训练期间缓存成本函数的中间值。 B. 【  】我们用它将在正向传播过程中计算的变量传递到相应的反向传播步骤。它包含了反向传…

【计算机组成原理】考研真题攻克与重点知识点剖析 - 第 2 篇:数据的表示和运算

前言 本文基础知识部分来自于b站&#xff1a;分享笔记的好人儿的思维导图与王道考研课程&#xff0c;感谢大佬的开源精神&#xff0c;习题来自老师划的重点以及考研真题。此前我尝试了完全使用Python或是结合大语言模型对考研真题进行数据清洗与可视化分析&#xff0c;本人技术…

目标检测算法改进系列之Backbone替换为NextViT

NextViT介绍 由于复杂的注意力机制和模型设计&#xff0c;大多数现有的视觉Transformer&#xff08;ViTs&#xff09;在现实的工业部署场景中不能像卷积神经网络&#xff08;CNNs&#xff09;那样高效地执行&#xff0c;例如TensorRT 和 CoreML。这带来了一个明显的挑战&#…

iPhone苹果手机复制粘贴内容提示弹窗如何取消关闭提醒?

经常使用草柴APP查询淘宝、天猫、京东商品优惠券拿购物返利的iPhone苹果手机用户&#xff0c;复制商品链接后打开草柴APP粘贴商品链接查券时总是弹窗提示粘贴内容&#xff0c;为此很多苹果iPhone手机用户联系客服询问如何关闭iPhone苹果手机复制粘贴内容弹窗提醒功能的方法如下…

设计加速!11个Adobe XD插件推荐!

你是否一直在寻找可以提升 Adobe XD 工作流程和体验的方法&#xff1f;如果是&#xff0c;一定要试试这些 Adobe XD 插件&#xff01;本文将介绍 11 款好用的 Adobe XD 插件&#xff0c;这些插件可以为 UI/UX 设计添加很酷的新功能&#xff0c;极大提升你的工作效率和产出。让我…

Linux多线程网络通信

思路&#xff1a;主线程&#xff08;只有一个&#xff09;建立连接&#xff0c;就创建子线程。子线程开始通信。 共享资源&#xff1a;全局数据区&#xff0c;堆区&#xff0c;内核区描述符。 线程同步不同步需要取决于线程对共享资源区的数据的操作&#xff0c;如果是只读就不…

代码随想录第35天 | ● 01背包问题,你该了解这些! ● 01背包问题—— 滚动数组 ● 416. 分割等和子集

01背包 题目 有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i]&#xff0c;得到的价值是value[i] 。每件物品只能用一次&#xff0c;求解将哪些物品装入背包里物品价值总和最大。 代码 function testWeightBagProblem (weight, value, size) {// 定义 d…