基于支持向量机SVM和MLP多层感知神经网络的数据预测matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

一、支持向量机(SVM)

二、多层感知器(MLP)

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

...................................................................
%SVM
% 以下是关于SVM模型的设置。  
% 并行计算设置,使用多核CPU进行计算。  
svm_opt      = statset('UseParallel',true);tic% 开始计时,计算模型训练时间。  
% 使用fitcsvm函数训练SVM模型,其中标准化设为真,核函数、多项式阶数、盒子约束等参数进行设置。结果为最优的SVM模型svm_optimal。  
svm_models   = fitcsvm(xTrain,yTrain, 'Standardize', true,...'KernelFunction',"polynomial",...% "polynomial"核函数是一个多项式核函数,它对应于无穷维特征空间中的点积。  'PolynomialOrder' ,2,...% "2"定义了多项式的阶数'BoxConstraint',0.8);%"0.8"定义了约束条件。  
% 计算并存储SVM模型训练时间。
Time_svm     = toc;  
% 对测试集进行预测和评价。  
yr_svm       = predict(svm_models, xTest);........................................................................
%MLP
% 以下是关于多层感知器(MLP)模型的设置。  
% MLP的超参数
mlp_models.divideFcn = 'dividerand';  %将数据随机划分  
mlp_models.divideMode = 'sample';     %对每个样本进行划分  
mlp_models.divideParam.trainRatio = 0.85;% 训练集占85%  
mlp_models.divideParam.valRatio   = 0.15;% 验证集占15%  
% 创建一个有35个隐藏层节点的模式识别神经网络,训练函数为'trainrp'(反向传播) 
mlp_models = patternnet(35, 'trainrp'); 
mlp_models.trainParam.lr = 0.004;% 设置学习率为0.004 
mlp_models.trainParam.mc = 0.35;% 设置动量系数为0.35  
% 设置第一层的传递函数为'transig'(Sigmoid函数)  
mlp_models.trainParam.epochs=300;% 设置训练次数为300次  
tic% 开始计时,计算模型训练时间。% 使用训练数据进行训练,结果存储在net中,同时返回训练记录tr,预测输出y和误差e。  
..........................................................................
figure
plot(xSVM,ySVM,'r')
hold on
plot(xMLP,yMLP,'b')
legend('SVM','MLP')
xlabel('FP'); 
ylabel('TP');
title('ROC曲线')
grid onfigure
bar([aucSVM,aucMLP]);
xlabel('模型类型');
ylabel('R auc');
xticklabels({'SVM','MLP'});
ylim([0.75,1]);
67

4.算法理论概述

       支持向量机(SVM)和多层感知器(MLP)是两种常用的机器学习算法,它们在数据预测和分类任务中都有广泛的应用。下面将详细介绍这两种算法的原理和数学公式。

一、支持向量机(SVM)

      支持向量机是一种二分类算法,其基本思想是在特征空间中找到一个最优超平面,使得该超平面能够将不同类别的数据点尽可能地分开。具体来说,对于一个二分类问题,假设数据集包含n个样本{(x1, y1), (x2, y2), ..., (xn, yn)},其中xi是输入特征向量,yi是对应的类别标签(+1或-1)。SVM的目标是找到一个最优超平面wx+b=0,使得该超平面能够将不同类别的数据点尽可能地分开,同时使得超平面两侧的空白区域(即“间隔”)最大化。

在数学上,SVM的优化问题可以表示为以下形式:

min 1/2 ||w||^2 + C ∑ ξ_i
s.t. y_i (w^T x_i + b) ≥ 1 - ξ_i, i=1,2,...,n
ξ_i ≥ 0, i=1,2,...,n

       其中,w是超平面的法向量,b是超平面的截距,C是一个惩罚参数,用于控制误分类的惩罚力度,ξ_i是第i个样本的松弛变量,用于容忍一些不可分的样本。该优化问题的目标是最小化超平面的法向量长度(即||w||^2)和误分类的惩罚项(即C ∑ ξ_i)。

       对于非线性可分的情况,可以通过核函数将输入特征映射到高维空间,使得在高维空间中数据变得线性可分。此时,优化问题中的内积运算需要用核函数来替代。常见的核函数包括线性核、多项式核和高斯核等。

二、多层感知器(MLP)

       多层感知器是一种前向传播的神经网络,其基本结构包括输入层、隐藏层和输出层。在数据预测任务中,MLP通过学习输入数据和输出数据之间的非线性映射关系,来对新的输入数据进行预测。具体来说,对于一个回归问题,假设数据集包含n个样本{(x1, y1), (x2, y2), ..., (xn, yn)},其中xi是输入特征向量,yi是对应的输出值。MLP的目标是找到一个最优的网络参数θ,使得对于任意一个新的输入x,都能够输出一个尽可能接近真实值y的预测值。

在数学上,MLP的预测过程可以表示为以下形式:

y_pred = f(x; θ)

        其中,f(·)表示MLP的网络结构,θ表示网络参数。通常,MLP的网络结构包括多个隐藏层和非线性激活函数,如ReLU、sigmoid或tanh等。网络参数的优化通常采用梯度下降算法及其变种,如批量梯度下降、随机梯度下降和小批量梯度下降等。在训练过程中,通过反向传播算法计算损失函数对网络参数的梯度,并根据梯度更新网络参数,以最小化预测误差。常见的损失函数包括均方误差损失、交叉熵损失等。

        需要注意的是,MLP的训练过程容易陷入局部最优解和过拟合等问题。为了避免这些问题,可以采用一些正则化技术,如L1正则化、L2正则化和dropout等。此外,还可以采用一些集成学习技术,如bagging和boosting等,以提高模型的泛化能力和鲁棒性。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/127110.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mysql面试题25:数据库自增主键可能会遇到什么问题?应该怎么解决呢?

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:数据库自增主键可能会遇到什么问题? 数据库自增主键可能遇到的问题: 冲突问题:自增主键是通过自动递增生成的唯一标识符,但在某些情况下可能会…

AI产品经理-能力模型

一、概况 AI产品经理/助理(需求工程师):大多数入门的AI产品经理应该都在这里,顾名思义,就是在整体产品规划中帮助大PD实现部分产品功能的助理或者需求工程师,需要具备比较强的AI知识框架与理解能力以保障各…

【Spring Cloud系统】- Zookeer特性与使用场景

【Spring Cloud系统】- Zookeer特性与使用场景 一、概述 Zookeeper是一个分布式服务框架,是Apache Hadoop的一个子项目,它主要是用来解决分布式应用中经常遇到的一些数据管理问题。如:统一命名服务、状态同步服务、集群管理、分布式应用配置…

【FISCO-BCOS】十六、多群组部署

目录 一、星形拓扑和并行多组 二、多群组部署(星形拓扑) 1、ipconf文件的编写 2、指定文件部署 3、检查节点共识 一、星形拓扑和并行多组 这是区块链应用中使用较广泛的两种组网方式 星形拓扑:中心机构节点同时属于多个群组,…

ping使用

使用shell ping一个网段 #!/bin/shfor ib in $(seq 1 254); doip"192.168.1.$ib"(if ping -c3 "$ip" >> 1.txt; thenecho "$ip is alive"fi) &done wait在每次循环的最后,使用 & 将子 shell 放入后台执行&#xff0c…

设计模式 - 七大软件设计原则

目录 一、设计模式 1.1、软件设计原则 1.1.1、开闭原则 1.2.2、单一职责原则 1.2.3、里氏替换原则 1.2.4、迪米特原则 1.2.5、接口隔离原则 1.2.6、依赖倒转原则 1.2.7、合成/聚合复用原则 一、设计模式 1.1、软件设计原则 1.1.1、开闭原则 开闭原则:对扩…

【微服务】七. http客户端Feign

7.1 基于Feign远程调用 RestTimeplate方式调用存在的问题 先来看以前利用RestTemplate发起远程调用的代码: String url "http://userservice/user"order.getUserId(); User user restTemplate.getForObject(url,User.class);存在下面的问题&#xf…

11-Webpack模块打包工具

01.什么是 Webpack 目标 了解 Webpack 的概念和作用,以及使用 讲解 Webpack 是一个静态模块打包工具,从入口构建依赖图,打包有关的模块,最后用于展示你的内容 静态模块:编写代码过程中的,html&#xf…

Python实现AES算法和国密SM4算法

本文主要介绍使用AES加密算法的Python实现和shell脚本实现、SM4国密算法的Python实现。Python使用pycryptodome实现AES加解密、使用GmSSL实现SM4加解密算法;Shell脚本使用openssl实现AES加解密,详细见下文。 1、Python实现加密和解密 1.1 Python实现AES…

Python 自动化测试框架unittest与pytest的区别

引言 前面一篇文章Python单元测试框架介绍已经介绍了python单元测试框架,大家平时经常使用的是unittest,因为它比较基础,并且可以进行二次开发,如果你的开发水平很高,集成开发自动化测试平台也是可以的。而这篇文章主…

广州华锐互动:VR动物解剖实验室带来哪些便利?

随着科技的不断发展,我们的教育方式也在逐步变化和进步。其中,虚拟现实(VR)技术的应用为我们提供了一种全新的学习方式。尤其是在动物解剖实验中,VR技术不仅能够增强学习的趣味性,还能够提高学习效率和准确性。 由广州华锐互动开发…

亘古难题——前端开发or后端开发

一、引言 前端开发 前端开发是创建WEB页面或APP等前端界面呈现给用户的过程,通过HTML,CSS及JavaScript以及衍生出来的各种技术、框架、解决方案,来实现互联网产品的用户界面交互。 前端开发从网页制作演变而来,名称上有很明显的时…