基于 Kettle + StarRocks + FineReport 的大数据处理分析方案

Kettle + StarRocks + FineReport 的大数据处理分析方案

其中 Kettle 负责数据的ETL处理,StarRocks 负责海量数据的存储及检索,FineReport 负责数据的可视化展示。整体过程如下所示:

在这里插入图片描述
如果多上面三个组件不了解可以先参考下下面的文章:

Kettle 介绍及基本使用

StarRocks 极速全场景 MPP 数据库介绍及使用

FineReport 快速设计联动报表

一、实验数据及数据规划

COVID-19,简称“新冠肺炎”,世界卫生组织命名为“2019冠状病毒病” [1-2] ,是指2019新型冠状病毒感染导致的肺炎。现有美国 2021-01-28 号,各个县county的新冠疫情累计案例信息,包括确诊病例和死亡病例,数据格式如下所示:

date(日期),county(县),state(州),fips(县编码code),cases(累计确诊病例),deaths(累计死亡病例)
2021-01-28,Pike ,Alabama,01109,2704,35
2021-01-28,Randolph,Alabama,01111,1505,37
2021-01-28,Russell,Alabama,01113,3675,16
2021-01-28, Shelby ,Alabama,01117,19878,141
2021-01-28,St. Clair,Alabama,01115,8047,147
2021-01-28, Sumter ,Alabama,01119,925,28
2021-01-28,Talladega,Alabama,01121,6711,114
2021-01-28,Tallapoosa,Alabama,01123,3258,112
2021-01-28, Tuscaloosa ,Alabama,01125,22083,283
2021-01-28,Walker,Alabama,01127,6105,185
2021-01-28, walker,Alabama,01129,1454,27

数据集下载:

https://download.csdn.net/download/qq_43692950/86805389

数据规划 及 表设计

最终呈现希望要根据 分别统计确诊病例和死亡病例的总数、最大值,并以图表的形式展示。

可以考虑使用 StarRocks 聚合模型和明细模型:

-- 县聚合表
DROP TABLE IF EXISTS agg_county;
CREATE TABLE IF NOT EXISTS agg_county (county VARCHAR(255) COMMENT "县",cases_sum BIGINT SUM DEFAULT "0" COMMENT "确诊总数",cases_max BIGINT MAX DEFAULT "0" COMMENT "确诊最大值",deaths_sum BIGINT SUM DEFAULT "0" COMMENT "死亡总数",deaths_max BIGINT MAX DEFAULT "0" COMMENT "死亡最大值"
)
DISTRIBUTED BY HASH(county) BUCKETS 8;-- 州聚合表
DROP TABLE IF EXISTS agg_state;
CREATE TABLE IF NOT EXISTS agg_state (state VARCHAR(255) COMMENT "州",cases_sum BIGINT SUM DEFAULT "0" COMMENT "确诊总数",cases_max BIGINT MAX DEFAULT "0" COMMENT "确诊最大值",deaths_sum BIGINT SUM DEFAULT "0" COMMENT "死亡总数",deaths_max BIGINT MAX DEFAULT "0" COMMENT "死亡最大值"
)
DISTRIBUTED BY HASH(state) BUCKETS 8;--明细表
DROP TABLE IF EXISTS covid;
CREATE TABLE IF NOT EXISTS covid (county VARCHAR(255) COMMENT "县",date DATE COMMENT "日期",state VARCHAR(255) COMMENT "州",fips VARCHAR(255) COMMENT "县编码code",cases INT(10) COMMENT "累计确诊病例",deaths INT(10) COMMENT "累计死亡病例"
)
DUPLICATE KEY(county)
DISTRIBUTED BY HASH(county) BUCKETS 8;

二、 ETL 处理

2.1 ETL 整体设计:

在这里插入图片描述

2.2 详细处理过程

  1. CSV文件输入

在这里插入图片描述

  1. 字段选择

在这里插入图片描述

  1. 字符串不为空,statecounty 同理:

在这里插入图片描述

  1. 字符串操作

在这里插入图片描述

  1. 排序记录

在这里插入图片描述

  1. 去除重复记录

在这里插入图片描述

  1. 表输出:

在这里插入图片描述

2.3 ETL 处理耗时:

在这里插入图片描述

可以明显看出写入速度非常慢 !

2.4 写入速度非常慢怎么办

StarRocks 不建议小批量的 INSERT 写入数据,对于持续写入可使用 KafkaMySQL 中转,下面以 kafka 为示例:

官方示例:https://docs.starrocks.io/zh-cn/latest/loading/RoutineLoad

先清空数据

truncate table covid;
truncate table agg_state;
truncate table agg_county;

创建 kafka 持续导入任务:

-- covid 数据接入
CREATE ROUTINE LOAD covid_load ON covid
COLUMNS TERMINATED BY ",",
COLUMNS (date,fips,cases,deaths,county,state)
PROPERTIES
("desired_concurrent_number" = "5"
)
FROM KAFKA
("kafka_broker_list" = "192.168.40.1:9092,192.168.40.2:9092,192.168.40.3:9092","kafka_topic" = "starrocks_covid","kafka_partitions" = "0,1,2","property.kafka_default_offsets" = "OFFSET_END"
);-- agg_state 数据接入
CREATE ROUTINE LOAD agg_state_load ON agg_state
COLUMNS TERMINATED BY ",",
COLUMNS (state,deaths_sum,deaths_max,cases_sum,cases_max)
PROPERTIES
("desired_concurrent_number" = "5"
)
FROM KAFKA
("kafka_broker_list" = "192.168.40.1:9092,192.168.40.2:9092,192.168.40.3:9092","kafka_topic" = "starrocks_agg_state","kafka_partitions" = "0,1,2","property.kafka_default_offsets" = "OFFSET_END"
);-- agg_county数据接入
CREATE ROUTINE LOAD agg_county_load ON agg_county
COLUMNS TERMINATED BY ",",
COLUMNS (county,deaths_sum,deaths_max,cases_sum,cases_max)
PROPERTIES
("desired_concurrent_number" = "5"
)
FROM KAFKA
("kafka_broker_list" = "192.168.40.1:9092,192.168.40.2:9092,192.168.40.3:9092","kafka_topic" = "starrocks_agg_county","kafka_partitions" = "0,1,2","property.kafka_default_offsets" = "OFFSET_END"
);

ETL 修改:

在这里插入图片描述

主要将表输出换成了 Concat fieldskafka producer

Concat fields

在这里插入图片描述

kafka producer

在这里插入图片描述

再次运行查看 ETL 耗时:

在这里插入图片描述

速度快了近 1000 倍。

三、FineReport 可视化设计

  1. 新建决策报表:
    在这里插入图片描述
    在这里插入图片描述
  2. 拖入图表

在这里插入图片描述

  1. 定义数据库连接
    在这里插入图片描述
    在这里插入图片描述

  2. 定义数据库查询

    在这里插入图片描述
    在这里插入图片描述

    select state,deaths_sum from agg_state ORDER BY deaths_sum DESC limit 10
    

    同理添加:

    州累计确诊Top10:

    select state,cases_sum  from agg_state ORDER BY cases_sum DESC limit 10
    

    各个州确诊最大值Top10:

    select state,cases_max  from agg_state ORDER BY cases_max DESC limit 10
    

    各个州死亡最大值 Top10:

    select state,deaths_max  from agg_state ORDER BY deaths_max DESC limit 10
    
  3. 州累计死亡总数Top10 绑定数据

    在这里插入图片描述

  4. 州累计确诊总数 Top10 绑定数据
    在这里插入图片描述

  5. 同步设置另两个图表

  6. 生成预览链接:
    在这里插入图片描述

  7. 展示效果:
    在这里插入图片描述

四、 需求修改应对方式

假设现在需要统计每个州的平均死亡数,怎么高效率低成本修改?

答案:可以基于明细表,使用异步物化视图,实现预聚合的效果。

官方说明:https://docs.starrocks.io/zh-cn/latest/using_starrocks/Materialized_view

CREATE MATERIALIZED VIEW agg_state_view 
DISTRIBUTED BY HASH(state) BUCKETS 8 AS
SELECT state,sum(deaths) AS deaths_max, COUNT(county) AS num FROM covid GROUP BY state

注意:在 StarRocks 中聚合模型和物化视图都不支持 avg

FineReport 中查询时:

select state, deaths_max/num from agg_state_view

思考:当有了物化视图,再对明细表做相同聚合操作,还会扫描全表吗?

答案:不会了

例如:

EXPLAIN
SELECT state,sum(deaths) AS deaths_max, COUNT(county) AS num FROM covid GROUP BY state

下面可以看到自动转到视图上了:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/127513.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

李沐深度学习记录5:13.Dropout

Dropout从零开始实现 import torch from torch import nn from d2l import torch as d2l# 定义Dropout函数 def dropout_layer(X, dropout):assert 0 < dropout < 1# 在本情况中&#xff0c;所有元素都被丢弃if dropout 1:return torch.zeros_like(X)# 在本情况中&…

采集网页数据保存到文本文件---爬取古诗文网站

访问古诗文网站&#xff08;https://so.gushiwen.org/mingju/&#xff09; 会显示出这个页面&#xff0c;里面包含了很多的名句&#xff0c;点击某一个名句&#xff08;比如点击无处不伤心&#xff0c;轻尘在玉琴&#xff09;就会出现完整的古诗 我们点击鼠标右键&#xff0c;点…

IS-IS

二、IS-IS中的DIS与OSPF中的DR Level-1和Level-2的DIS是分别选举的&#xff0c;用户可以为不同级别的DIS选举设置不同的优先级。DIS的选举规则如下&#xff1a;DIS优先级数值最大的被选为DIS。如果优先级数值最大的路由器有多台&#xff0c;则其中MAC地址最大的路由器会成为DI…

缓冲流 java

字节缓冲池的默认大小 &#xff08;8192/byte&#xff09;字节输入输出流 字节缓冲输入接口也是 InputStream 读字节 实现类BufferedInputStream 字节缓冲输出接口也是 OutputStream 写字节 实现类BufferedOutputStream package BufferFlow;import CopysIO.Myconnectio…

html 笔记:CSS

1 什么是CSS CSS 指层叠样式表 (Cascading Style Sheets) 样式定义如何显示 HTML 元素样式通常存储在样式表中 1.1 css的语法格式 1.1.1 选择器种类 HTML选择器&#xff1a; 重新定义HTML的某种标签的显示格式id选择器 对于HTML文档中的某个标签&#xff0c;定义它的显示格式…

柯桥生活口语学习,英语中初次见面,除了Nice to meet you,还能说什么?

第一印象非常重要。所以当你第一次见到某人时&#xff0c;留下一个好印象很重要&#xff0c;尤其是当你面对一个重要的工作或者面对某个对你来说可能非常特别的人时。 下面我列出了一些最常用的说“很高兴见到你”的表达方法&#xff0c;也包括对方的回答&#xff0c;除了nice …

数据结构----结构--非线性结构--图

数据结构----结构–非线性结构–图 一.图&#xff08;Graph&#xff09; 1.图的结构 图是多对多的结构 2.图的基本概念 图的基本概念为G(V,E) V是顶点的集合 E是边的集合 G是图 一个图其实是顶点和边的二元组合 观察下图,思考V和E集合中的元素分别都是什么 V{V1,V2,V…

阿里云RDS关系型数据库详细介绍_多版本数据库说明

阿里云RDS关系型数据库大全&#xff0c;关系型数据库包括MySQL版、PolarDB、PostgreSQL、SQL Server和MariaDB等&#xff0c;NoSQL数据库如Redis、Tair、Lindorm和MongoDB&#xff0c;阿里云百科分享阿里云RDS关系型数据库大全&#xff1a; 目录 阿里云RDS关系型数据库大全 …

Springboot——jxls实现同sheet多个列表展示

文章目录 前言制定模板1、限定模板数据的范围2、设定报表展示项 编写测试类1、将xls模板文件放于 resource 下的 doc文件夹中2、导入依赖文件3、编写接口和导出逻辑 效果预览结论 前言 在之前的博客中Springboot——使用jxls实现excel模板导出excel&#xff0c;具体说明了jxls…

Springboot 音乐网站管理系统idea开发mysql数据库web结构java编程计算机网页源码maven项目

一、源码特点 springboot 音乐网站管理系统是一套完善的信息系统&#xff0c;结合springboot框架和bootstrap完成本系统&#xff0c;对理解JSP java编程开发语言有帮助系统采用springboot框架&#xff08;MVC模式开发&#xff09;&#xff0c;系统 具有完整的源代码和数据库&…

数据结构刷题训练——二叉树篇(一)

&#x1f4d9;作者简介&#xff1a; 清水加冰&#xff0c;目前大二在读&#xff0c;正在学习C/C、Python、操作系统、数据库等。 &#x1f4d8;相关专栏&#xff1a;C语言初阶、C语言进阶、C语言刷题训练营、数据结构刷题训练营、有感兴趣的可以看一看。 欢迎点赞 &#x1f44d…

【已解决】Python打包文件执行报错:ModuleNotFoundError: No module named ‘pymssql‘

【已解决】Python打包文件执行报错&#xff1a;ModuleNotFoundError: No module named pymssql 1、问题2、原因3、解决 1、问题 今天打包一个 tkinter pymssql 的项目的时候&#xff0c;打包过程很顺利&#xff0c;但是打开软件的时候&#xff0c;报错 ModuleNotFoundError: …