线性代数-Python-01:向量的基本运算 -手写Vector -学习numpy的基本用法

文章目录

  • 代码
    • 目录结构
    • Vector.py
    • _globals.py
    • main_vector.py
    • main_numpy_vector.py
  • 一、创建属于自己的向量
    • 1.1 在控制台测试__repr__和__str__方法
    • 1.2 创建实例测试代码
  • 二、向量的基本运算
    • 2.1 加法
    • 2.2 数量乘法
    • 2.3 向量运算的基本性质
    • 2.4 零向量
    • 2.5 向量的长度
    • 2.6 单位向量
    • 2.7 点乘/内积:两个向量的乘法 --答案是一个标量

代码

目录结构

F:.
|   main_numpy_vector.py
|   main_vector.py
|
+---.idea
|
\---playLA|   Vector.py|   _globals.py|   __init__.py|\---__pycache__

在这里插入图片描述

Vector.py

import math
from ._globals import EPSILON
class Vector:def __init__(self, lst):"""__init__ 代表类的构造函数双下划线开头的变量 例如_values,代表类的私有成员lst是个引用,list(lst)将值复制一遍,防止用户修改值"""self._values = list(lst)def dot(self, another):"""向量点乘,返回结果标量"""assert len(self) == len(another), \"Error in dot product. Length of vectors must be same."return sum(a * b for a, b in zip(self, another))def norm(self):"""返回向量的模"""return math.sqrt(sum(e**2 for e in self))def normalize(self):"""归一化,规范化返回向量的单位向量此处设计到了除法: def __truediv__(self, k):"""if self.norm() < EPSILON:raise ZeroDivisionError("Normalize error! norm is zero.")return Vector(self._values) / self.norm()# return 1 / self.norm() * Vector(self._values)# return Vector([e / self.norm() for e in self])def __truediv__(self, k):"""返回数量除法的结果向量:self / k"""return (1 / k) * self@classmethoddef zero(cls, dim):"""返回一个dim维的零向量@classmethod 修饰符对应的函数不需要实例化,不需要 self 参数,但第一个参数需要是表示自身类的cls参数,可以来调用类的属性,类的方法,实例化对象等。"""return cls([0] * dim)def __add__(self, another):"""向量加法,返回结果向量"""assert len(self) == len(another), \"Error in adding. Length of vectors must be same."# return Vector([a + b for a, b in zip(self._values, another._values)])return Vector([a + b for a, b in zip(self, another)])def __sub__(self, another):"""向量减法,返回结果向量"""assert len(self) == len(another), \"Error in subtracting. Length of vectors must be same."return Vector([a - b for a, b in zip(self, another)])def __mul__(self, k):"""返回数量乘法的结果向量:self * k"""return Vector([k * e for e in self])def __rmul__(self, k):"""返回数量乘法的结果向量:k * selfself本身就是一个列表"""return self * kdef __pos__(self):"""返回向量取正的结果向量"""return 1 * selfdef __neg__(self):"""返回向量取负的结果向量"""return -1 * selfdef __iter__(self):"""返回向量的迭代器"""return self._values.__iter__()def __getitem__(self, index):"""取向量的第index个元素"""return self._values[index]def __len__(self):"""返回向量长度(有多少个元素)"""return len(self._values)def __repr__(self):"""打印显示:Vector([5, 2])"""return "Vector({})".format(self._values)def __str__(self):"""打印显示:(5, 2)"""return "({})".format(", ".join(str(e) for e in self._values))

_globals.py

# 包中的变量,但是对包外不可见,因此使用“_”开头
EPSILON = 1e-8

main_vector.py

from playLA.Vector import Vectorif __name__ == "__main__":vec = Vector([5, 2])print(vec)print("len(vec) = {}".format(len(vec)))print("vec[0] = {}, vec[1] = {}".format(vec[0], vec[1]))vec2 = Vector([3, 1])print("{} + {} = {}".format(vec, vec2, vec + vec2))print("{} - {} = {}".format(vec, vec2, vec - vec2))print("{} * {} = {}".format(vec, 3, vec * 3))print("{} * {} = {}".format(3, vec, 3 * vec))print("+{} = {}".format(vec, +vec))print("-{} = {}".format(vec, -vec))zero2 = Vector.zero(2)print(zero2)print("{} + {} = {}".format(vec, zero2, vec + zero2))print("norm({}) = {}".format(vec, vec.norm()))print("norm({}) = {}".format(vec2, vec2.norm()))print("norm({}) = {}".format(zero2, zero2.norm()))print("normalize {} is {}".format(vec, vec.normalize()))print(vec.normalize().norm())print("normalize {} is {}".format(vec2, vec2.normalize()))print(vec2.normalize().norm())try:zero2.normalize()except ZeroDivisionError:print("Cannot normalize zero vector {}.".format(zero2))print("========点乘:========")print(vec.dot(vec2))

main_numpy_vector.py

import numpy as npif __name__ == "__main__":print(np.__version__)# np.array 基础print("========np.array 基础========")lst = [1, 2, 3]lst[0] = "Linear Algebra"print(lst)print("========vec = np.array([1, 2, 3])========")vec = np.array([1, 2, 3])print(vec)# vec[0] = "Linear Algebra"# vec[0] = 666# print(vec)print("========np.array的创建========")# np.array的创建print(np.zeros(5))print(np.ones(5))print(np.full(5, 666))print("========np.array的基本属性========")# np.array的基本属性print(vec)print("size =", vec.size)print("size =", len(vec))print(vec[0])print(vec[-1])print(vec[0: 2])print(type(vec[0: 2]))print("========np.array的基本运算========")# np.array的基本运算vec2 = np.array([4, 5, 6])print("{} + {} = {}".format(vec, vec2, vec + vec2))print("{} - {} = {}".format(vec, vec2, vec - vec2))print("{} * {} = {}".format(2, vec, 2 * vec))print("没有数学意义的乘法:{} * {} = {}".format(vec, vec2, vec * vec2))print("{}.dot({}) = {}".format(vec, vec2, vec.dot(vec2)))print("========求模========")print(np.linalg.norm(vec))print("========归一化========")print(vec / np.linalg.norm(vec))print("========单位向量========")print(np.linalg.norm(vec / np.linalg.norm(vec)))print("========零向量会报错========")zero3 = np.zeros(3)print(zero3 / np.linalg.norm(zero3))

一、创建属于自己的向量

class Vector:def __init__(self, lst):self._values = lstdef __getitem__(self, index):"""取向量的第index个元素"""return self._values[index]def __len__(self):"""返回向量长度(有多少个元素)"""return len(self._values)def __repr__(self):"""打印显示:Vector([5, 2])"""return "Vector({})".format(self._values)def __str__(self):"""打印显示:(5, 2)"""return "({})".format(", ".join(str(e) for e in self._values))

1.1 在控制台测试__repr__和__str__方法

在这里插入图片描述

1.2 创建实例测试代码

from playLA.Vector import Vectorif __name__ == "__main__":vec = Vector([5, 2])print(vec)print("len(vec) = {}".format(len(vec)))print("vec[0] = {}, vec[1] = {}".format(vec[0], vec[1]))

在这里插入图片描述

二、向量的基本运算

2.1 加法

在这里插入图片描述

2.2 数量乘法

在这里插入图片描述

2.3 向量运算的基本性质

在这里插入图片描述

2.4 零向量

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.5 向量的长度

在这里插入图片描述在这里插入图片描述

2.6 单位向量

单位向量叫做 u hat
在这里插入图片描述
在这里插入图片描述

2.7 点乘/内积:两个向量的乘法 --答案是一个标量

在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述

在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/140099.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ChatGPT快速入门

ChatGPT快速入门 一、什么是ChatGPT二、ChatGPT底层逻辑2.1 实现原理2.2 IO流程 三、ChatGPT应用场景3.1 知心好友3.2 文案助理3.3 创意助理3.4 角色扮演 一、什么是ChatGPT ChatGPT指的是基于GPT&#xff08;Generative Pre-trained Transformer&#xff09;模型的对话生成系…

WordPress 常规设置页面调用媒体中心上传图片插入URL(新版可用)

首先&#xff0c;我们需要在主题或插件文件夹中创建一个 JavaScript 文件&#xff08;如&#xff1a;media-uploader.js&#xff09;&#xff0c;该文件中包含如下代码。 /*** 媒体中心上传 js **/ jQuery(document).ready(function($){var mediaUploader;$(#upload_image_but…

大数据开发中的秘密武器:探索Hadoop纠删码的奇妙世界

随着大数据技术的发展&#xff0c;HDFS作为Hadoop的核心模块之一得到了广泛的应用。为了系统的可靠性&#xff0c;HDFS通过复制来实现这种机制。但在HDFS中每一份数据都有两个副本&#xff0c;这也使得存储利用率仅为1/3&#xff0c;每TB数据都需要占用3TB的存储空间。因此&…

Python configparser模块使用教程

文章目录 .ini 拓展名文件简介.ini 文件格式1. 节2. 参数3. 注解 configparser 模块简介configparser 模块的初始化和读取获取 ini 中所有 section获取 section 下的 key获取 section 下的 value获取指点section的所用配置信息修改某个key&#xff0c;如果不存在则会出创建检查…

一些bug总结

今天被几个小问题和bug折磨了一天&#xff0c;来总结一下… 权限问题 用vscode连接服务器&#xff0c;如果是在root用户连接的情况下新建的文件/文件夹&#xff0c;然后切换到别的用户的时候去写的代码 可能会遇到各种问题 解决方案是更改文件或文件夹的所有权。这可以通过使用…

【计算机网络】https协议

文章目录 1 :peach:基本概念:peach:1.1 :apple:什么是HTTPS&#xff1f;:apple:1.2 :apple:什么是加密&#xff1f;:apple:1.3 :apple:常见的加密方式:apple:1.3.1 :lemon:对称加密:lemon:1.3.2 :lemon:⾮对称加密:lemon: 1.4 :lemon:数据指纹:lemon: 2 :peach:HTTPS的⼯作过程…

6-3 用链栈实现将非负的十进制数转换为指定的进制数【有题解视频,可本地编译器调试】 分数 15

int DecimalConvert(LinkStack s, int dec, int scale) {while (dec){if (LinkStackPush(s, dec % scale))dec dec / scale;elsereturn 0;}return 1; }

页面路由跳转 - 文件 File对象数据传递

目录 需求主要问题点问题点2.1 演示问题点2.2 演示及解决页面B 处理1 - 有问题页面B 处理2 - 没有问题 - 最终解决办法 【补充】 file 对象转为 base64 文件&#xff08;即 将 file 对象转为 DataURL&#xff09; 需求 页面A填写完信息&#xff08;填写的信息中有上传的文件&am…

xml schema中的all元素

说明 xml schema中的all元素表示其中的子元素可以按照任何顺序出现&#xff0c;每个元素可以出现0次或者1次。 https://www.w3.org/TR/xmlschema-1/#element-all maxOccurs的默认值是1&#xff0c;minOccurs 的默认值是1。 举例 <element name"TradePriceRequest&…

实现mnist手写数字识别

>- **&#x1f368; 本文为[&#x1f517;365天深度学习训练营](https://mp.weixin.qq.com/s/Nb93582M_5usednAKp_Jtw) 中的学习记录博客** >- **&#x1f356; 原作者&#xff1a;[K同学啊 | 接辅导、项目定制](https://mtyjkh.blog.csdn.net/)** >- **&#x1f680;…

金融数学方法:有限差分法

目录 1.原理介绍 1.1 有限差分法介绍 1.2 有限差分法步骤 2.案例分析 2.1 问题重述 2.2 问题求解 1.原理介绍 1.1 有限差分法介绍 有限差分法是一种常用的数值计算方法&#xff0c;用于求解偏微分方程或常微分方程的数值解。它的基本思想是将连续的空间区域离散化为有限…

Elasticsearch7.9.3保姆级安装教程

Linux版本Elasticsearch版本(待安装)Kibana版本(待安装)CentOS 77.9.37.9.3 一、下载地址 1、官网下载 打开地址 https://www.elastic.co/cn/downloads/past-releases#elasticsearch&#xff0c;按如图所示选择对应版本即可 2、采用wget下载 为了不必要的麻烦&#xff0c;建…